[0] Some graph-related preliminaries

(A) We consider the following game on an undirected, simple graph G. There are two players, a red color player R and a blue color B. Initially, all edges are uncolored. Player R starts playing first, and the two players alternately color an uncolored edge of G with their color. The goal of B is that in the end of the game the blue colored edges form a connected spanning subgraph of G. The goal of R is to prevent this.

- Show that B can always win if G contains two edge-disjoint spanning trees.

(B) Let $k \geq 2$. Show that in a k-connected graph any k vertices lie on a common cycle. [Hint: One idea is to proceed by induction on k.]

(C) Given positive integers d_1, \ldots, d_n such that $\sum_{i=1}^{n} d_i = 2n - 2$, how many labeled trees with vertex set $\{1, \ldots, n\}$ are there such that vertex i has degree d_i for each i? [Hint: Review Prüfer’s code.]

(D) Let T be a tree on $k \geq 2$ vertices. Let G be a graph whose minimum degree $\delta(G)$ satisfies $\delta(G) \geq k - 1$.

- Prove or disprove: Does G always contain a copy of T?

(E) Prove that the Ford-Fulkerson algorithm terminates for rational capacities.

(F) Deduce Hall’s marriage theorem from the max-flow/min-cut theorem.

(G) An $n \times n$ matrix with entries from $\{1, \ldots, n\}$ is called a Latin square, if every element of $\{1, \ldots, n\}$ appears exactly once in each column, and exactly once in each row. Recast the problem of constructing Latin squares as coloring problem.

(H) Let $G(V, E), |V| \geq 2$ be a connected weighted graph with distinct positive integer weights on the edges.

- Prove or disprove: For every vertex v, the edge e of minimum weight that is incident to v is necessarily in any minimum spanning tree (MST) of G.
- Prove or disprove: G has a unique MST.
[1] Probability

(A) Cauchy-Schwartz inequality Prove the Cauchy-Schwartz inequality for random variables X,Y

$$|E[XY]| \leq \sqrt{E[X^2]} \sqrt{E[Y^2]}.$$

(B) Bonferonni Inequalities Let E_1, E_2, \ldots, E_n be events in a sample space. We have been using the union bound a lot in our class:

$$\Pr[E_1 \cup \ldots \cup E_n] \leq \sum_{i=1}^{n} \Pr[E_i].$$

In this exercise you will prove a more general result. Define

$$S_1 = \sum_{i=1}^{n} \Pr[E_i]$$
$$S_2 = \sum_{i<j} \Pr[E_i \cap E_j]$$

and for $2 < k \leq n$,

$$S_k = \sum_{(i_1, \ldots, i_k)} \Pr[E_{i_1} \cap \ldots \cap E_{i_k}],$$

where the summation is taken over all ordered k-tuples of distinct integers.

Prove for odd k, $1 \leq k \leq n$

$$\Pr[E_1 \cup \ldots \cup E_n] \leq \sum_{j=1}^{k} (-1)^{j+1} S_j.$$

and for even k, $2 \leq k \leq n$

$$\Pr[E_1 \cup \ldots \cup E_n] \geq \sum_{j=1}^{k} (-1)^{j+1} S_j.$$

(C) Chernoff bound Let’s assume that we have a biased coin such that $\Pr[Heads] = 0.6$. Assuming all coin tosses are independent, how many tosses n do I need to be sure with 99% probability that no less than 0.55n tosses are heads?
(D) Poisson Limit Theorem Recall that a random variable Z has a Poisson distribution with parameter λ, denoted $Z \sim \text{Po}(\lambda)$, if it takes values in $\{0, 1, \ldots\}$ with probabilities

$$\Pr[Z = k] = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \ldots$$

Let $X_{N,i}$, $1 \leq i \leq N$ be independent random variables $X_{N,i} \sim \text{Ber}(p_{N,i})$, and let $S_N = \sum_{i=1}^{N}$. Assume that as $N \to +\infty$, $\max_{1 \leq i \leq N} p_{N,i} \to 0$ and $E[S_n] \to \lambda < +\infty$. Then, as $N \to +\infty$,

$$S_N \to \text{Po}(\lambda) \text{ in distribution.}$$

[3] Erdős-Rényi graphs

(A) Practicing the first moment method Let $G \sim G(n, p)$ where $p = o(n^{-3/2})$. Prove that G consists of isolated vertices and independent edges.

(B) Cycles in $G(n, p)$ Prove that the threshold for the emergence of cycles in $G(n, p)$ is $p^* = \frac{1}{n}$.

(C) Perfect matchings in random bipartite graphs $B(n, n, p)$ Let $p = \frac{\log n + c}{n}$ where c is a constant. Let G be a random subgraph of the complete bipartite graph $K_{n,n}$ given by taking each edge with probability p, where choices are made independently. Show that

$$\Pr[G \text{ has a perfect matching}] \to e^{-2e^{-c}}$$

as $n \to +\infty$.

[Hints: (a) Use the Bonferroni inequalities to “sandwich” the probability of the event “no vertex is isolated”. (b) Then, prove that the main reason why there can be no perfect matching in G are isolated vertices. In other words, show that the probability that Hall’s theorem is violated for any other reason is $o(1)$.

[4] Not a Small world

Consider a grid of n^2 points in 2 dimensions with each node connected to its four nearest neighbors (i.e., 2d grid). In addition, each node i chooses another node j uniformly at random and established an undirected connection to it. Our goal is to route a message from a source node s to a target node t with $r(s,t) \geq \frac{n}{2}$. Here $r(s,t)$ is the distance between s,t on the grid (i.e., without the random edges).

- Prove that the expected number of steps required by any decentralized algorithm is at least \sqrt{n}.

In this problem you will study empirically various properties of networks\(^1\). First, download the following graphs\(^2\).

You may use your favorite programming language to code up the following tasks. You may re-use existing software (actually, you should). Check the Web page under the Resources tab to find links to useful packages.

(A) For each graph: if it is directed, make it undirected, by ignoring the direction of each edge. Remove multiple edges and self-loops.

(B) For each graph:

- Report the number of vertices and edges. Compute the average degree and the variance of the degree distribution.
- Generate the following frequency plot: the x-axis will correspond to degrees and the y-axis to frequencies. The function you will plot is \(f(x) = \# \text{vertices with degree } x \). Re-plot the same function in log-log scale.
- Use the code available at http://tuvalu.santafe.edu/~aaronc/powerlaws/ to fit a power-law distribution to the degree sequence of the graph. Report the output of the \texttt{plfit} function.

(C) Plot a histogram of the sizes of the connected components of each graph.

(D) For each graph, pick any vertex \(v \) in the connected component of the largest order. Report the id of the vertex you chose and compute for each \(k = 1, 2, \ldots \), \(f(k) = \# \text{vertices at distance } k \text{ from } v \). Plot \(f(k) \) versus \(k \).

(E) For each graph compute the diameter of the largest connected component.

\(^1\) Send me your code by e-mail.
\(^2\) The files are .mat. If you are not using MATLAB you can download the same graphs in different format from http://snap.stanford.edu/data/.
(F) For each graph:

1. Compute for each vertex \(v \) in how many \(K_3 \)s it participates in.

2. Compute the local clustering coefficients and plot their distribution.

3. Let \(k=\text{degree}, \quad f(k) = \text{average number of triangles over all vertices of degree } k \). Plot \(f(k) \) versus \(k \) in log-log scale, including error bars for the variance. Fit a least squares line and report the slope.

4. How can you use the previous answer to find outliers in a network?

(G) For each graph report the top-20 eigenvalues of the adjacency matrix.

(H) For each of the five (5) graphs, generate a random binomial graph on the same number of vertices \(n_i \), where \(n_i \) is the number of vertices in \(G_i, \ i = 1, \ldots, 5 \) with \(p = \frac{\log n_i}{n_i} \). Answer questions (A) through (G) for these graphs.

(I) Make a high-level evaluation of your findings. For instance, how different is the road network from the Web graph? Also, compare your findings between real-world networks and random binomial graphs.