
1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 1/45

CS365 : Foundations of Data Science

Lectures 2, 3, 4

Author: Prof. Charalampos E. Tsourakakis

This notebook is written in Julia 1.9. For those who are not familiar with Julia, and wonder

why one would like to use Julia, you can read this cool Manifesto by George Datseris

Why Julia - a Manifesto. One of the main reasons I suggest exploring Julia is its unique

blend of features. It offers the interactive coding experience commonly associated with

interpreted languages like Python, allowing for real-time coding adjustments. At the

same time, it delivers performance on par with compiled, low-level languages such as C.

This combination makes Julia a compelling choice for various programming tasks.

Probability overview

Probability space

A Probability Space is a mathematical construct in probability theory that provides a

formal model for randomness and uncertainty. It is defined as a triple

consisting of:

�. Sample Space ():

This is the set of all possible outcomes of a random experiment.

Example: For a coin toss, .

�. Sigma-algebra ():

Also known as a sigma-field, this is a collection of subsets of that satisfies

certain properties.

In [143… using Random
using Plots
using StatsBase
using DataFrames
using Statistics

(Ω,F ,P)

Ω

Ω = {heads, tails}

F

Ω

https://tsourakakis.com/cs365-foundations-of-data-science-spring24/
file:///Users/babis/GitHub/teaching-Github/cs365-spring24/tsourakakis.com
https://julialang.org/
https://julialang.org/
https://github.com/Datseris/whyjulia-manifesto

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 2/45

It includes the empty set and itself, and is closed under the operations of

complementation and countable unions.

Example: For a coin toss, .

�. Probability Measure ():

A function that assigns a probability to each set in .

This function must satisfy three axioms:

Non-negativity: For every , .

Normalization: .

Countable Additivity: For any countable sequence of mutually exclusive

sets , .

The probability space thus provides a framework for calculating probabilities of events

and understanding the behavior of random processes.

Exercise: Let be a sample space with probability measure . Also, let and be any

events in . Then the following hold.

�.

�.

Proof

(1) For the first property, note that by definition of the complement of an event we

have

In other words, given any event , we can represent the sample space as a disjoint

union of with its complement. Thus, by the first and third axioms, we derive the first

property:

which implies

(2) For the second property, note that we can write , and that this is a disjoint

union, since anything intersected with the empty set will necessarily be empty. So, using

the first and third axioms, we derive the second property:

which implies

Ω

F = {∅, {heads}, {tails}, {heads, tails}}

P

F

A ∈ F P(A) ≥ 0

P(Ω) = 1

A1,A2, … ∈ F P (⋃∞
i=1 Ai) = ∑∞

i=1 P(Ai)

S P A B

S

P(Ac) = 1 − P(A)

P(∅) = 0

A

A ∪ Ac = S and A ∩ Ac = ∅.

A S

A

1 = P(S) = P(A ∪ Ac) = P(A) + P(Ac)

P(Ac) = 1 − P(A)

S = S ∪ ∅

1 = P(S) = P(S ∪ ∅) = P(S) + P(∅)

P(∅) = 0

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 3/45

Let's toss a fair coin times and estimate the probability of observing

heads using the fraction

Probability of Heads: 0.534
Probability of Tails: 0.466

Let's plot the empirical probability of observing Heads vs the number of tosses.

ntosses = 1000

#heads

#tosses

In [1]: coin_sides = ["Tails", "Heads"]
n_tosses = 1000

random_tosses = rand(coin_sides, n_tosses)

probability_heads = count(==("Heads"), random_tosses) / n_tosses
probability_tails = count(==("Tails"), random_tosses) / n_tosses

println("Probability of Heads: ", probability_heads)
println("Probability of Tails: ", probability_tails)

In [117… coin_tosses = union([1], (100:100:1000), (2000:1000:10000))

p = Float64[]

for n_tosses in coin_tosses
 random_tosses = rand(coin_sides, n_tosses)
 probability_heads = count(==("Heads"), random_tosses) / n_tosses
 push!(p, probability_heads)
end

selected_xticks = [coin_tosses[1], coin_tosses[5], coin_tosses[10], coin_tos

plot(coin_tosses, p, legend=false, xlims=(1, 10200), ylims=(0, 1), yticks=0
hline!([0.5], line=:dash, color=:black)
xlabel!("#Coin tosses")
ylabel!("\$ p_{HEADS} \$")

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 4/45

More examples of Probability Spaces

1. Roll of a Die

Sample Space (): The set of outcomes when a fair six-sided die is rolled.

Sigma-algebra (): The power set of , which includes all subsets of .

For simplicity, let's consider

Probability Measure (): Each outcome is equally likely.

 for each

Let's conduct a simulation of die rolls and create a bar chart to display the observed

frequencies for each face of the die.

Out[117]:

Ω

Ω = {1, 2, 3, 4, 5, 6}

F Ω Ω

F = {∅, Ω, {1}, {2}, … , {6}, {1, 2}, …}

P

P({i}) = 1
6

i ∈ Ω

In [11]: die = 1:6
n_tosses = 10000
random_tosses = rand(die, n_tosses)
prob = Dict{Int64, Float64}()

for side in die
 prob[side] = count(==(side), random_tosses)/n_tosses
end

println(prob)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 5/45

Dict(5 => 0.1674, 4 => 0.166, 6 => 0.1702, 2 => 0.1666, 3 => 0.1642, 1 => 0.1
656)

1.0365408038976855

Let's plot the ratio of the most frequent to the least frequent empirical probability. As the

number of tosses increases, we expect it to approach to 1.

In [18]: keys_list = collect(keys(prob))
values_list = collect(values(prob))

println(maximum(values_list)/minimum(values_list))

bar(keys_list, values_list, xlabel="sides", title="Empirical probabilities
hline!([1/6], line=:dash, color=:black)

Out[18]:

In [43]: die_tosses = union((10:10:100), (200:100:1000))

ratios = Float64[]

for n_tosses in die_tosses
 random_tosses = rand(die, n_tosses)
 prob = Dict(side => count(==(side), random_tosses)/n_tosses for side in
 values_list = collect(values(prob))
 push!(ratios, maximum(values_list)/minimum(values_list))
end

plot(die_tosses, ratios, legend=false, xlims=(1, 1100), ylims=(0, 10), ytic
hline!([1], line=:dash, color=:black)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 6/45

19-element Vector{Float64}:
 2.9999999999999996
 2.5
 8.0
 5.5
 2.6
 2.4285714285714284
 2.2857142857142856
 2.0
 2.222222222222222
 2.166666666666667
 1.6666666666666665
 1.2954545454545454
 1.3859649122807018
 1.1025641025641024
 1.1630434782608696
 1.1363636363636365
 1.293103448275862
 1.2388059701492538
 1.1879194630872483

Random Variables

What is a Random Variable

Out[43]:

In [44]: ratios

Out[44]:

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 7/45

A Random Variable is a variable that takes on different values determined by the

outcomes of a random process. Formally, it is a function that maps outcomes from the

sample space of a probability experiment to real numbers.

Formal Definition: Given a probability space , a random variable is a

function , such that for every real number , the set

 belongs to .

Random variables are used to quantify the outcomes of random processes and to

conduct probability and statistical analysis. For example, if we toss the coin twice, there

exist four possible events that define our sample space

. An example of a random

variable is the number of heads in this experiment. For example and

.

Exercise Give some more examples of random variables.

What is a Discrete Random Variable

A Discrete Random Variable is a type of random variable that can take on a countable

number of distinct values. The values can be finite or countably infinite.

Characteristics:

The probability distribution can be described using a probability mass function

(PMF).

Examples include the number of heads in coin tosses, the number of red cards

drawn from a deck, etc.

Probability Mass Function (PMF): For a discrete random variable , the PMF is

given by , which provides the probability that takes the value

.

In the example where we flip a fair coin twice, the probability mass function (pmf) is as

follows:

Let's explore some significant discrete probability distributions, beginning with the one

named after Jacob Bernoulli, who lived from 1655 to 1705. The Bernoulli family made

remarkable scientific contributions that are worth noting.

(Ω,F ,P) X

X : Ω → R x

{ω ∈ Ω : X(ω) ≤ x} F

{ω1 = (H,H),ω2 = (T ,T),ω3 = (H,T),ω4 = (T ,H)}

X(ω1) = 2

X(ω4) = 1

X

pX(x) = P(X = x) X

x

pX(0) = , pX(1) = , pX(2) = .
1

4

1

2

1

4

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 8/45

Image source: Galileo unbound

Bernoulli Distribution

A random variable follows the Bernoulli distribution or ifX Ber(X; p) Ber(X|p)

Pr(X = x) = { 1 − p if x = 0
p if x = 1

In [57]: Base.@kwdef struct Bernoulli
 p::Float64 = 0.5
end

function simulate(trial::Bernoulli)
 return rand() < trial.p ? 1 : 0
end

ber = Bernoulli()

for i in 1:10
 😺 = simulate(ber)
 println("Result of $(i)-th simulation of Bernoulli with p=$(ber.p) is $(
end

https://galileo-unbound.blog/2020/10/06/the-bountiful-bernoulli-of-basel/

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 9/45

Result of 1-th simulation of Bernoulli with p=0.5 is 1
Result of 2-th simulation of Bernoulli with p=0.5 is 1
Result of 3-th simulation of Bernoulli with p=0.5 is 1
Result of 4-th simulation of Bernoulli with p=0.5 is 1
Result of 5-th simulation of Bernoulli with p=0.5 is 0
Result of 6-th simulation of Bernoulli with p=0.5 is 0
Result of 7-th simulation of Bernoulli with p=0.5 is 0
Result of 8-th simulation of Bernoulli with p=0.5 is 1
Result of 9-th simulation of Bernoulli with p=0.5 is 0
Result of 10-th simulation of Bernoulli with p=0.5 is 1

Result of 1-th simulation of Bernoulli with p=1.0 is 1
Result of 2-th simulation of Bernoulli with p=1.0 is 1
Result of 3-th simulation of Bernoulli with p=1.0 is 1
Result of 4-th simulation of Bernoulli with p=1.0 is 1
Result of 5-th simulation of Bernoulli with p=1.0 is 1
Result of 6-th simulation of Bernoulli with p=1.0 is 1
Result of 7-th simulation of Bernoulli with p=1.0 is 1
Result of 8-th simulation of Bernoulli with p=1.0 is 1
Result of 9-th simulation of Bernoulli with p=1.0 is 1
Result of 10-th simulation of Bernoulli with p=1.0 is 1

Binomial distribution

The binomial distribution has two parameters and . is a positive integer and a

probability. It is the distribution of the number of successes in a sequence of

independent experiment, each having a probability of success. A binomial random

variable can be written as the sum of N iid (independent identically distributed) Bernoulli

 random variables. When , the binomial random variable is the same as a

Bernoulli random variable. The binomial distribution for a rv is defined

by:

where is the number of ways to choose items from (this is known as

the binomial coefficient, and is pronounced "N choose k").

In [58]: ber_certainty = Bernoulli(1)

for i in 1:10
 😺 = simulate(ber_certainty)
 println("Result of $(i)-th simulation of Bernoulli with p=$(ber_certaint
end

N p N p

N

p

Ber(p) N = 1

X ∼ Bin(N , p)

Bin(k|N , p) ≡ Pr(X = k) = ()pk(1 − p)N−kN

k

() ≡N
k

N !
(N−k)!k!

k N

In [62]: Base.@kwdef struct BinomialRV
 n::Int = 1000
 p::Float64 = 0.5
end

function simulate(binom_rv::BinomialRV)
 successes = sum(rand() < binom_rv.p for _ in 1:binom_rv.n)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 10/45

Discrete uniform

The discrete uniform distribution is a symmetric probability distribution wherein a finite

number of values are equally likely to be observed. For example, the outcome of a fair

die follows the discrete uniform distribution with the set of possible values being

.

 return successes
end

function generate_samples(binom_rv::BinomialRV, num_samples::Int)
 return [simulate(binom_rv) for _ in 1:num_samples]
end

Example usage: generate 1000 samples from a Binomial distribution with n=1
binom_rv = BinomialRV(n=100, p=0.5)
samples = generate_samples(binom_rv, 1000)

histogram(samples, bins=0:binom_rv.n, legend=false,
 xlabel="Number of Successes", ylabel="Frequency",
 title="Histogram of Binomial Distribution")

Out[62]:

{1, . . , 6}

In [69]: Base.@kwdef struct DiscreteUniformRV #special case of a discrete uar, could
 a::Int=0 # Lower bound
 b::Int=1 # Upper bound, for these default values this is a Bernoulli(0.
end

function simulate(du_rv::DiscreteUniformRV)
 return rand(du_rv.a:du_rv.b)
end

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 11/45

Multinomial distribution

Suppose an experiment is conducted where balls are drawn from a bag containing

balls of different colors, with each draw being replaced. Balls of the same color are

considered indistinguishable. Let represent the random variable corresponding to the

count of balls of color (where) that have been drawn, and let denote

the probability of drawing a ball of color in a single trial. The probability mass function

(PMF) for the multinomial distribution is given by:

Generate discrete uniform samples
function generate_samples(du_rv::DiscreteUniformRV, num_samples::Int)
 return [simulate(du_rv) for _ in 1:num_samples]
end

Example usage: generate 1000 samples from a Discrete Uniform distribution
du_rv = DiscreteUniformRV(a=1, b=6)
samples = generate_samples(du_rv, 1000)

Calculate frequencies for each outcome
frequencies = countmap(samples)

Plot the bar chart
bar(collect(du_rv.a:du_rv.b), [get(frequencies, x, 0) for x in du_rv.a:du_rv
 legend=false, xlabel="Value", ylabel="Frequency",
 title="Bar Chart of Discrete Uniform Distribution")

Out[69]:

n

k

Xi

i i = 1, … , k pi

i

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 12/45

where the are non-negative integers that represent the count of occurrences for each

color and must sum to .

The PMF can also be expressed using the gamma function for a more generalized

formulation:

Here, (\Gamma) represents the gamma function, which generalizes the factorial

function with (\Gamma(n) = (n-1)!) for an integer (n).

f(x1, … ,xk;n, p1, … , pk) = Pr(X1 = x1 and … and Xk = xk) = {
p
x1

1 ⋯ p

0,

n!
x1!⋯xk!

xi
n

f(x1, … ,xk; p1, … , pk) =
k

∏
i=1

pxi
i

.
Γ(∑

k

i=1 xi + 1)

∏
k

i=1 Γ(xi + 1)

In [88]: struct MultinomialRV
 outcomes_probs::Dict{Any, Float64}
 n::Int
end

function simulate(multinomial_rv::MultinomialRV)
 outcomes = collect(keys(multinomial_rv.outcomes_probs))
 probabilities = collect(values(multinomial_rv.outcomes_probs))
 multinomial_dist = Multinomial(multinomial_rv.n, probabilities)
 sample = rand(multinomial_dist)
 return Dict(zip(outcomes, sample))
end

function generate_samples(multinomial_rv::MultinomialRV, num_samples::Int)
 return [simulate(multinomial_rv) for _ in 1:num_samples]
end

outcomes_probs = Dict("A" => 0.2, "B" => 0.3, "C" => 0.5)
multinomial_rv = MultinomialRV(outcomes_probs, 100) # 10 trials
samples = generate_samples(multinomial_rv, 1000)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 13/45

1000-element Vector{Dict{Any, Int64}}:
 Dict("B" => 29, "A" => 15, "C" => 56)
 Dict("B" => 27, "A" => 24, "C" => 49)
 Dict("B" => 29, "A" => 23, "C" => 48)
 Dict("B" => 25, "A" => 28, "C" => 47)
 Dict("B" => 37, "A" => 12, "C" => 51)
 Dict("B" => 19, "A" => 23, "C" => 58)
 Dict("B" => 30, "A" => 19, "C" => 51)
 Dict("B" => 31, "A" => 15, "C" => 54)
 Dict("B" => 29, "A" => 15, "C" => 56)
 Dict("B" => 30, "A" => 21, "C" => 49)
 Dict("B" => 30, "A" => 23, "C" => 47)
 Dict("B" => 31, "A" => 23, "C" => 46)
 Dict("B" => 26, "A" => 18, "C" => 56)
 ⋮
 Dict("B" => 24, "A" => 22, "C" => 54)
 Dict("B" => 39, "A" => 19, "C" => 42)
 Dict("B" => 31, "A" => 21, "C" => 48)
 Dict("B" => 26, "A" => 15, "C" => 59)
 Dict("B" => 28, "A" => 21, "C" => 51)
 Dict("B" => 34, "A" => 22, "C" => 44)
 Dict("B" => 27, "A" => 19, "C" => 54)
 Dict("B" => 31, "A" => 17, "C" => 52)
 Dict("B" => 32, "A" => 22, "C" => 46)
 Dict("B" => 31, "A" => 22, "C" => 47)
 Dict("B" => 29, "A" => 22, "C" => 49)
 Dict("B" => 37, "A" => 19, "C" => 44)

Poisson distribution

A discrete random variable is said to have a Poisson distribution, with parameter

, if it has a probability mass function given by:

where

 is the number of occurrences

 is Euler's number

 is the factorial of .

We will use the package Distributions to simulate the Poisson.

Out[88]:

X

λ > 0

f(k;λ) ≡ Pr(X = k) = ,
λke−λ

k!

k (k = 0, 1, 2, …)

e (e ≈ 2.71828 …)

k! k

In [81]: using Distributions

Base.@kwdef struct PoissonRV
 λ::Float64 # Rate parameter (lambda)
end

Simulate function for a Poisson random variable
function simulate(poisson_rv::PoissonRV)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 14/45

WARNING: using Distributions.Bernoulli in module Main conflicts with an exist
ing identifier.

Poisson distribution models several real-world processes.

Number of Calls: The number of calls received by a call center in an hour.

Public Transport: The number of buses arriving at a bus stop in a given period of

time.

Website Traffic: The number of visits to a website in a day.

Mail Reception: The number of mail or packages a post office receives per day.

Biology: The number of times a bacterium divides over a fixed time interval.

Defects in Manufacturing: The number of defects found in a batch of products.

 poisson_dist = Poisson(poisson_rv.λ)
 return rand(poisson_dist)
end

Generate Poisson samples
function generate_samples(poisson_rv::PoissonRV, num_samples::Int)
 return [simulate(poisson_rv) for _ in 1:num_samples]
end

Example usage: generate 1000 samples from a Poisson distribution with λ=4.
poisson_rv = PoissonRV(λ=4.0)
samples = generate_samples(poisson_rv, 1000)

Plot the histogram
histogram(samples, bins=0:maximum(samples)+1, legend=false,
 xlabel="Number of Events", ylabel="Frequency",
 title="Histogram of Poisson Distribution")

Out[81]:

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 15/45

Natural Events: The number of natural occurrences, such as earthquakes in a region

over a year.

The distribution is named after the French mathematician and physicist Simon Denis

Poisson

Geometric random variable

The geometric distribution gives the probability that the first occurrence of success

requires independent trials, each with success probability . If the probability of

success on each trial is , then the probability that the -th trial is the first success is

k p

p k

Pr(X = k) = (1 − p)k−1p, k = 1, 2, 3, 4, …

In [99]: @kwdef struct GeometricRV
 p::Float64=0.5
end

https://en.wikipedia.org/wiki/Sim%C3%A9on_Denis_Poisson
https://en.wikipedia.org/wiki/Sim%C3%A9on_Denis_Poisson

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 16/45

Empirical mean 19.538, and 1/p=20.0

The geometric distribution is a special case of a negative binomial random variable that

we discuss next.

Negative binomial random variable

function simulate(geom_rv::GeometricRV)
 return rand(Geometric(geom_rv.p))
end

function generate_samples(geom_rv::GeometricRV, num_samples::Int)
 return [simulate(geom_rv) for _ in 1:num_samples]
end

Example usage: generate 1000 samples from a Geometric distribution with p=
geom_rv = GeometricRV(p=0.05)
samples = generate_samples(geom_rv, 1000)

Plot the histogram
histogram(samples, bins=0:maximum(samples), legend=false,
 xlabel="Number of Trials", ylabel="Frequency",
 title="Histogram of Geometric Distribution")

Plot a vertical line at the expected value 1/p
vline!([1/geom_rv.p], label="Expected value", color=:red)

Out[99]:

In [98]: println("Empirical mean $(mean(samples)), and 1/p=$(1/0.05)")

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 17/45

Suppose we have an "urn" with balls, of which are red and of which are blue. We

consider drawing a red ball a "failure", and drawing a blue ball a "success". Suppose we

keep drawing balls until we observe failures. Let be the resulting number of

successes (blue balls); it can be shown that , which is the

negative binomial distribution defined by

for . (If is real-valued, we replace with , exploiting the

fact that .)

N R B

r X

X ∼ NegBinom(r, p)

NegBinom(x|r, p) ≡ ()(1 − p)rpx
x + r − 1

x

x ∈ {0, 1, 2, …} r ()x+r−1
x

Γ(x+r)

x!Γ(r)

(x − 1)! = Γ(x)

In [107… @kwdef struct NegativeBinomialRV
 r::Int=1 # Number of failures until stopping, by default we set i
 p::Float64=0.1 # Probability of success
end

Simulate function for a Negative Binomial random variable
function simulate(negbin_rv::NegativeBinomialRV)
 return rand(NegativeBinomial(negbin_rv.r, negbin_rv.p))
end

Generate negative binomial samples
function generate_samples(negbin_rv::NegativeBinomialRV, num_samples::Int)
 return [simulate(negbin_rv) for _ in 1:num_samples]
end

Example usage: generate 1000 samples from a Negative Binomial distribution
negbin_rv = NegativeBinomialRV(r=3, p=0.1)
samples = generate_samples(negbin_rv, 10000)

Calculate the empirical mean of the samples
empirical_mean = mean(samples)

Plot the histogram
histogram(samples, bins=0:maximum(samples)+1, legend=false,
 xlabel="Number of Successes", ylabel="Frequency",
 title="Histogram of Negative Binomial Distribution")

Plot a vertical line at the expected value r/p
vline!([negbin_rv.r/negbin_rv.p], label="Mean value", color=:red)
 vline!([mean(samples)], label="Expected value", color=:black)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 18/45

What is a Continuous Random Variable

A Continuous Random Variable is a random variable that can take on an infinite number

of possible values, typically any value within an interval on the real number line.

Characteristics:

The probability distribution is described using a probability density function

(PDF).

Examples include the exact height of students in a class, the time it takes for a

chemical reaction to complete, etc.

Probability Density Function (PDF): For a continuous random variable , the PDF,

denoted as , is such that the probability that is in the interval is given

by the integral .

In both discrete and continuous random variables, the main goal is to study the behavior

of these variables and use them to make predictions or inferences about the underlying

random processes.

Gaussian distribution

A univariate distribution we will come across a lot is the Gaussian distribution. The pdf

(probability density function) of the Gaussian is given by

Out[107]:

X

f(x) X (a, b)

∫ b

a
f(x)dx

N (x;μ,σ2) ≡ N (x|μ,σ2) ≡ fX(x) = e
− (x−μ)21

√2πσ2

1

2σ2

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 19/45

The cumulative distribution function or cdf of the Gaussian is defined as

If and (known as the standard normal distribution or just the normal

distribution), we just write .

Φ(x;μ,σ2) ≡ ∫
x

−∞

N (z|μ,σ2)dz

μ = 0 σ = 1

Φ(x)

In [123… @kwdef struct GaussianRV
 μ::Float64=0 # Mean
 σ²::Float64=1 # Variance
end

function simulate(gaussian_rv::GaussianRV)
 σ = sqrt(gaussian_rv.σ²) # Standard deviation is the square root of the
 return rand(Normal(gaussian_rv.μ, σ))
end

function generate_samples(gaussian_rv::GaussianRV, num_samples::Int)
 return [simulate(gaussian_rv) for _ in 1:num_samples]
end

gaussian_rv = GaussianRV(μ=0, σ²=1)
samples = generate_samples(gaussian_rv, 10000)

empirical_mean = mean(samples)

Plot the histogram
histogram(samples, bins=50, legend=false,
 xlabel="Value", ylabel="Frequency",
 title="Histogram of Gaussian Distribution")

Plot a vertical line at the mean μ
vline!([gaussian_rv.μ], label="Mean", color=:red)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 20/45

Out[123]:

In [124… gaussian_rv = GaussianRV(μ=0, σ²=10)
samples2 = generate_samples(gaussian_rv, 10000)

histogram(samples2, bins=50, legend=false,
 xlabel="Value", ylabel="Frequency",
 title="Histogram of Gaussian Distribution")

Out[124]:

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 21/45

Laplace distribution

Another important distribution with heavy tails is the Laplace distribution. It also has two

parameters like the Gaussian is a location parameter and is a scale parameter.

The pdf is the following:

In [125… gaussian_rv = GaussianRV(μ=0, σ²=1000)
samples2 = generate_samples(gaussian_rv, 10000)

histogram(samples2, bins=50, legend=false,
 xlabel="Value", ylabel="Frequency",
 title="Histogram of Gaussian Distribution")

Out[125]:

μ b > 0

Laplace(x|μ, b) ≡ exp(−)
1

2b

|x − μ|

b

In [130… @kwdef struct LaplaceRV
 μ::Float64=0 # Mean
 b::Float64=1 # scale parameter
end

function simulate(laplace_rv::LaplaceRV)
 return rand(Laplace(laplace_rv.μ, laplace_rv.b))
end

function generate_samples(laplace_rv::LaplaceRV, num_samples::Int)
 return [simulate(laplace_rv) for _ in 1:num_samples]

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 22/45

Beta distribution

The beta distribution is an important distribution that yields the uniform distribution as a

special case. It has support over the interval [0, 1] and is defined by the following pdf:

where is the beta function. The parameters are positive to ensure that

 exists. When a=b=1 we get the uniform distribution.

end

laplace_rv = LaplaceRV(μ=0, b=1)
samples = generate_samples(laplace_rv, 10000)

histogram(samples, bins=50, legend=false,
 xlabel="Value", ylabel="Frequency",
 title="Histogram of Laplace Distribution")

vline!([laplace_rv.μ], label="Mean", color=:red)

Out[130]:

Beta(x|a, b) = xa−1(1 − x)b−11

B(a, b)

B(a, b) a, b > 0

B(a, b)

In [139… using Distributions
using Plots

Number of samples to draw
num_samples = 10000

Define parameters for the beta distributions

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 23/45

Let's view the pdfs of Normal, Laplace and Uniform.

params = [(1, 1), (2, 5), (5,2), (2, 20)]

Create beta distribution objects with the specified parameters
distributions = [Beta(a, b) for (a, b) in params]

Generate samples and plot histograms for each set of parameters
histograms = []
for dist in distributions
 samples = rand(dist, num_samples)
 push!(histograms, histogram(samples, bins=50, alpha=0.6, label="a=$(dist
end

Combine the histograms into a single plot
plot(histograms..., layout=(2,2), legend=:topright, xlabel="Value", ylabel="

Out[139]:

In [140… function draw_distributions(x)
 normal_dist = pdf.(Normal(0, 1), x)
 uniform_dist = pdf.(Uniform(-1, 1), x)
 laplace_dist = pdf.(Laplace(0, 1), x)

 plot(x, normal_dist, color="blue", linestyle=:solid, label="Gaussian")
 plot!(x, uniform_dist, color="green", linestyle=:dash, label="Uniform")
 plot!(x, laplace_dist, color="red", linestyle=:dot, label="Laplace")

 ylims!(0, 0.61)
 xlabel!("x")
 ylabel!("\$p(x)\$")
end

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 24/45

Algorithm for Estimating π using 2d uniform random
variables

To estimate the value of π, we can employ a simple yet effective algorithm involving

random point generation within a unit square. Here's how the process works:

�. Begin by generating a series of n random points with coordinates such that

each point lies within the confines of a unit square, specifically in the interval [0,1]

for both x and y.

�. For each generated point, determine whether it resides within the quarter circle

inscribed within the unit square. The quarter circle is defined by the area where

�. Count the number of points that fall inside the quarter circle. Denote this count as

.

�. The estimate for π is then calculated using the ratio of the number of points inside

the quarter circle to the total number of points, multiplied by 4. Mathematically, this

estimate is represented as:

x = -4:0.01:4
draw_distributions(x)

Out[140]:

(x, y)

x2 + y2 ≤ 1

Sn

π̂ = 4 ×
Sn

n

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 25/45

This algorithm is grounded in the principles of geometric probability and leverages the

area of a circle in relation to the square that encloses it. Since the area of the circle is π

times the radius squared and the radius of the inscribed quarter circle is 1, the ratio of

the areas is π/4. Therefore, as the number of random points increases, the proportion

within the quarter circle should converge to π/4, making the algorithm a practical

approach to approximating π.

π estimate 3.19

In [148… function approximate_pi(n_exp=100)
 df = DataFrame(x=[], y=[], inside=[])
 for i in 1:n_exp
 x, y = rand(), rand()
 push!(df, (x, y, (x-0.5)^2 + (y-0.5)^2 <= 0.5^2))
 end
 pi_estimate = 4 * mean(df[!, :inside])
 println("π estimate ", pi_estimate)
 return pi_estimate, df
end

n_exp = 2000
pi_estimate, df = approximate_pi(n_exp)

colors = [flag ? :red : :blue for flag in df[!, :inside]]

scatter(df[!, :x], df[!, :y], color=colors, xlims=(-0.01, 1.01), ylims=(-0.0
plot!(0:0.01:1, x -> sqrt(0.5^2 - (x - 0.5)^2) + 0.5, color=:black, label="c
plot!(0:0.01:1, x -> -sqrt(0.5^2 - (x - 0.5)^2) + 0.5, color=:black, label="

Out[148]:

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 26/45

Expectation, Variance and Moments of random
variables

For a discrete random variable with possible values and corresponding

probabilities , the expectation or expected value is calculated as:

For a continuous random variable with probability density function , the

expectation is given by the integral:

The variance of a discrete random variable , denoted by or , is the

expected value of the squared deviation from the mean :

The variance of a continuous random variable with probability density function

is similarly defined as:

Variance measures the spread of the random variable's possible values from the mean,

indicating the degree of dispersion or concentration around the expected value.

In the realm of probability and statistics, moments are a set of measures that provide

significant insights into the shape and characteristics of a probability distribution.

Specifically, the moments of a random variable offer a systematic way to describe

various aspects of its distribution.

The k-th moment of a random variable , denoted as , is defined

mathematically as the expected value of raised to the power of :

This definition allows us to consider various cases:

When , is always equal to 1, reflecting the fact that any number raised

to the power of 0 is 1.

When , corresponds to the expected value of , denoted as ,

which is the mean of the distribution.

X xi

P(X = xi)

E[X] = ∑
i

xiP(X = xi)

X f(x)

E[X] = ∫
∞

−∞
xf(x)dx

X V ar(X) σ2

μ = E[X]

V ar(X) = E[(X − μ)2] = ∑
i

(xi − μ)2P(X = xi)

X f(x)

V ar(X) = ∫
∞

−∞
(x − μ)2f(x)dx

X Mk(X)

X k

Mk(X) = E[Xk]

k = 0 M0(X)

k = 1 M1(X) X E[X]

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 27/45

For , does not directly give the variance; instead, it represents the

mean of the square of . The variance, , can then be derived by

subtracting the square of the first moment (the mean) from the second moment:

Moving beyond the raw moments, we encounter the central moments which shift the

focus to the deviations from the mean. The k-th central moment of a random variable

, represented by , is the expected value of the -th power of the deviation of

from its mean:

The central moments are particularly valuable because they describe the variability and

shape of the distribution without being influenced by the location of the distribution. For

instance, the second central moment, , is the variance of , reflecting the

dispersion of the distribution around the mean.

The use of moments and central moments in statistical analysis provides a

comprehensive toolkit for describing and understanding the fundamental properties of

distributions.

Here are a few exercises that involve computing the expectation and variance of various

random variables:

Exercise 1: Expectation and Variance of a Discrete Random
Variable

Consider a discrete random variable that represents the outcome of rolling a six-sided

die. The probability distribution of is:

for .

a. Compute the expectation of .

b. Compute the variance of .

Exercise 2: Continuous Random Variable

Suppose is a continuous random variable with a uniform distribution over the interval

, where . The probability density function (pdf) of is given by:

k = 2 M2(X)

X V ar(X)

V ar(X) = M2(X) − (M1(X))2

X μk k X

μk(X) = E[(X − E[X])k]

μ2(X) X

X

X

P(X = x) =
1

6

x = 1, 2, 3, 4, 5, 6

E[X] X

V ar(X) X

X

[0, a] a > 0 X

f(x) =
1

a

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 28/45

for .

a. Compute the expectation of .

b. Compute the variance of .

Exercise 3: Binomial Random Variable

Let be a binomial random variable representing the number of heads obtained when

flipping a fair coin times. The probability mass function (pmf) of is given by:

for .

a. If , compute the expectation .

b. Compute the variance for the general case.

Exercise 4: Exponential Random Variable

An exponential random variable has a pdf given by:

for and .

a. Compute the expectation .

b. Compute the variance .

Answers:

For Exercise 1:

a.

b.

For Exercise 2:

a.

b.

For Exercise 3, assuming :

0 ≤ x ≤ a

E[X] X

V ar(X) X

X

n X

P(X = k) = ()()
k

()
n−k

n

k

1

2

1

2

k = 0, 1, 2, . . . ,n

n = 10 E[X]

V ar(X)

Y

f(y) = λe−λy

y ≥ 0 λ > 0

E[Y]

V ar(Y)

E[X] = ∑6
x=1 x ⋅ P(X = x) = ∑6

x=1 x ⋅ =1
6

7
2

V ar(X) = E[X2] − (E[X])2 = ∑6
x=1 x

2 ⋅ − ()
2

1
6

7
2

E[X] = ∫
a

0 x ⋅ f(x)dx = a

2

V ar(X) = ∫
a

0 (x − E[X])2 ⋅ f(x)dx =
a2

12

n = 10

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 29/45

a.

b.

For Exercise 4:

a.

b.

These exercises are meant to give you practice with calculating expectations and

variances for different types of random variables.

Conditional probability, independence, law of total
probability, and Bayes' rule

Conditional probability measures how likely an event is given that event has

happened. If , we define the conditional probability of given as:

This gives the following:

Conditional probability allows us to understand when events are independent. This

means that the occurrence of one event does not affect the probability of the other.

Formally, events and are independent if:

If and , this implies or equivalently,

. We say that and are conditionally independent given if:

Utilizing the foundation of conditional probability, we can state the law of total

probability. If is a partition of the sample space , then for any event

, we have:

E[X] = n ⋅ p = 10 ⋅ = 51
2

V ar(X) = n ⋅ p ⋅ (1 − p) = 10 ⋅ ⋅ = 2.51
2

1
2

E[Y] = ∫
∞

0 y ⋅ λe−λydy = 1
λ

V ar(Y) = ∫ ∞
0 (y − E[Y])2 ⋅ λe−λydy = 1

λ2

E1 E2

P(E2) ≠ 0 E1 E2

P(E1|E2) =
P(E1 ∩ E2)

P(E2)

P(E1 ∩ E2) = P(E1|E2)P(E2) = P(E2|E1)P(E1)

E1 E2

P(E1 ∩ E2) = P(E1)P(E2)

P(E1) > 0 P(E2) > 0 P(E1|E2) = P(E1)

P(E2|E1) = P(E2) E1 E2 E3

P(E1 ∩ E2|E3) = P(E1|E3)P(E2|E3)

{A1, … ,An} Ω

B ⊆ Ω

P(B) =
n

∑
i=1

P(B|Ai)P(Ai)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 30/45

Moving further into conditional probability, we encounter Bayes' rule, also known as

Bayes' theorem, which articulates that for any two events and such that

 and , we have:

For a discrete random variable with possible states, Bayes' rule can be applied in

conjunction with the law of total probability:

In this formulation, is the prior probability, is the likelihood,

 is the posterior probability, and is a normalization constant, known as

the marginal likelihood.

E1 E2

P(E1) > 0 P(E2) > 0

P(E1|E2) =
P(E2|E1)P(E1)

P(E2)

X K

p(X = k|E) =
p(E|X = k)p(X = k)

∑K

k′=1 p(E|X = k′)p(X = k′)

p(X = k) p(E|X = k)

p(X = k|E) p(E)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 31/45

Similarly, for a continuous random variable , Bayes' rule is written as:

In this continuous case, we integrate over all possible values of to find the marginal

likelihood.

Exercises

1. Kahneman-Tversky Taxi Accident

Consider the following situation inspired by Kahneman and Tversky's studies:

In a particular city at night, a cab was involved in a hit-and-run accident. The distribution

of cabs in the city is such that 85% are Green and 15% are Blue. A witness to the

accident identified the cab as Blue. Further information tells us that the witness's ability

to correctly identify the color of a cab is 80%.

The task is to determine the probability that the cab involved in the accident was

actually Blue and not Green. This exercise is an application of Bayes' theorem, which

allows for the updating of probabilities given new evidence.

Many people initially assume the probability to be quite high, with some estimates

exceeding 50% and others even reaching beyond 80%. However, the correct probability

may be counterintuitive. Apply Bayes' theorem to find the accurate probability that the

cab was Blue based on the witness's testimony.

X

p(X = x|E) =
p(E|X = x)p(X = x)

∫ p(E|X = x′)p(X = x′)dx′

X

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 32/45

2. Monty Hall paradox

Suppose youʼre on a game show, and youʼre given the choice of three doors. Behind one

door is a car, behind the others, goats. You pick a door, say #1, and the host, who knows

whatʼs behind the doors, opens another door, say #3, which has a goat. He says to you,

"Do you want to pick door #2?" Is it to your advantage to switch your choice of doors?

In [154… N = 10000 # we repeat the simulation N times
M = 10 # and we will show what happened the first M times

doors = [1, 2, 3]

door_with_car = rand(doors, N)
println("Placing the car behind one door:\t", join(door_with_car[1:M], " "))

player makes a first guess about the door that contains the car
first_guess = rand(doors, N)
println("Player chooses one door:\t\t", join(first_guess[1:M], " "))

Function to select a door different from the chosen ones
function select_other(chosen, doors)
 return setdiff(doors, chosen)[1]
end

revealed_door = [select_other([first_guess[i], door_with_car[i]], doors) for
println("Host opens other door with no car:\t", join(revealed_door[1:M], " "

second_guess_A = first_guess
println("\nStrategy A, player keeps first guess:\t", join(second_guess_A[1:M
success_A = (second_guess_A .== door_with_car)
println("Result:\t\t\t\t\t", join((x -> x ? 'W' : 'L').(success_A[1:M]), " "

Strategy B: player switches to the remaining door

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 33/45

Placing the car behind one door: 1 1 1 1 2 1 1 1 1 3
Player chooses one door: 1 2 3 3 3 3 1 3 2 3
Host opens other door with no car: 2 3 2 2 1 2 2 2 3 1

Strategy A, player keeps first guess: 1 2 3 3 3 3 1 3 2 3
Result: W L L L L L W L L W

Strategy B, player switches: 3 1 1 1 2 1 3 1 1 2
Result: L W W W W W L W W L

Success rate of Non-Switch Strategy A: 0.3408
Success rate of Switch Strategy B: 0.6592

3. Reviewing some basic properties of
probability

Consider a water source s and a destination village t. Each pipe has probability of

failure . Pipes fail independently.What is the probability we cannot get water from s to

t? In other words: when is the village t not reachable from the water source s?

Consider all possible scenarios:

The solutions are available on the slides here. Few important facts to keep in mind:

second_guess_B = [select_other([first_guess[i], revealed_door[i]], doors) fo
println("\nStrategy B, player switches:\t\t", join(second_guess_B[1:M], " ")
success_B = (second_guess_B .== door_with_car)
println("Result:\t\t\t\t\t", join((x -> x ? 'W' : 'L').(success_B[1:M]), " "

calculate the success rate for each strategy
success_rate_A = sum(success_A) / N
success_rate_B = sum(success_B) / N

println("\nSuccess rate of Non-Switch Strategy A: ", success_rate_A)
println("Success rate of Switch Strategy B: ", success_rate_B)

i

pi

https://docs.google.com/presentation/d/1WrT5LKHazYBxBiXjGuPgDbKYYOmvWhrq7vJgDL_peog/edit

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 34/45

�. Two events are independent . In general the

events are independent when

�.

In general, if two random variables are independent, then you can express the joint

probability as the product of their individual probabilities. For random variables and

belonging to sets and respectively, the probability is:

for all sets and .

A finite set of random variables is mutually independent if and only if

for any sequence of numbers , the events

are mutually independent events. This is equivalent to the following condition on the joint

cumulative distribution function :

for all .

The joint cumulative distribution function of mutually independent random variables is

the product of their individual cumulative distribution functions. This property is

fundamental in the study of probability and statistics, particularly in the analysis of

random processes and sampling methods.

�.

The probability of the union of events is given by the inclusion-exclusion

principle:

This formula accounts for the fact that simply adding the probabilities of each event

would count the intersection of events multiple times. The inclusion-exclusion principle

corrects for this by subtracting the probabilities of the intersections of every pair of

events, adding back in the probabilities of the intersections of triples of events, and so

on, up to the intersection of all events, which is either added or subtracted depending on

whether is odd or even.

A,B Pr(A ∩ B) = Pr(A)Pr(B)

A1, … ,An

Pr(∩n
i=1Ai) =

n

∏
i=1

Pr(Ai)

X Y

A B

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B),

A B

n {X1, … ,Xn}

{x1, … ,xn} {X1 ≤ x1}, … , {Xn ≤ xn}

FX1,…,Xn
(x1, … ,xn)

FX1,…,Xn
(x1, … ,xn) = FX1(x1) ⋅ … ⋅ FXn

(xn)

x1, … ,xn

A1,A2, … ,An

P (
n

⋃
i=1

Ai) =
n

∑
i=1

P(Ai) −∑
i<j

P(Ai ∩ Aj) + ∑
i<j<k

P(Ai ∩ Aj ∩ Ak) − ⋯ + (−1)n+1P

n

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 35/45

An online hiring problem : optimizing a
probability

A company has a hiring process that is constrained by a strict company policy: after

each interview, a decision must be made to either offer the job to the candidate

immediately or to reject them outright.

This problem poses a trade-off: how can we minimize the number of interviews

conducted while still maximizing the quality of the candidate we hire? The optimal

strategy must balance these two objectives, recognizing that each interview we conduct

is a cost against the potential benefit of finding a better candidate.

The task is to devise a strategy that allows us to hire a candidate who is near the best

with as few interviews as possible, adhering to the company's requirement of making an

immediate decision post-interview.

The manager decides the following strategy, assuming each candidate is associated with

a score. We assume that the ordering of the candidates is a permutation uniformly at

random.

online_maximum (generic function with 1 method)

In [170… function online_maximum(scores, k)
 n = length(scores) # number of candidates
 bestscore = maximum(scores[1:k]) # best score among the first k candidat

 best_position = k
 for i = k+1:n
 if scores[i] > bestscore || i==n
 bestscore = scores[i]
 best_position = i
 break
 end
 end

 return bestscore == maximum(scores)

end

Out[170]:

In [173… scores = [1,2,10,4,7,6,8]
for which k will we get true?

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 36/45

7-element Vector{Int64}:
 1
 2
 10
 4
 7
 6
 8

Question What choice of should we make to maximize the probability that our

algorithm returns indeed the best candidate.

.

Out[173]:

k

Pr(success) =
n

∑
i=k+1

ki − 1 ≈ log()
1

n

k

n

n

k

In [188… using Base.MathConstants: e

f(x, n) = (x / n) * log(n / x)

Set the value of n
n = 100

x_values = 1:1:n

y_values = f.(x_values, n)

plot(x_values, y_values, label="f(x) = x/n * ln(n/x)", xlabel="x", ylabel="f

vline!([n/e], label="x = n/e", color=:red)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 37/45

Multivariate distributions

Out[188]:

In [196… function simulate_joint_distribution(joint_distribution, num_samples)

 samples = [(i, j) for i in 1:size(joint_distribution)[1] for j in 1:size
 weights = reshape(joint_distribution, :)
 dist = Categorical(weights)
 empirical_distribution = zeros(size(joint_distribution))

 for _ in 1:num_samples
 idx = rand(dist)
 empirical_distribution[idx] += 1
 end

 empirical_distribution /= num_samples
 return empirical_distribution
end

num_samples = 10000

joint_distribution = [0.05 0.30 0.05 0.05;
 0.10 0.05 0.10 0.05;
 0.05 0.05 0.10 0.15]
joint_distribution /= sum(joint_distribution)

Simulate the joint distribution
empirical_distribution = simulate_joint_distribution(joint_distribution, num

Create a heatmap of the empirical frequencies

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 38/45

heatmap(empirical_distribution,
 c=:blues,
 xlabel="Value 2",
 ylabel="Value 1",
 title="Heatmap of Empirical Frequencies")

Out[196]:

In [197… heatmap(joint_distribution,
 c=:blues,
 xlabel="Value 2",
 ylabel="Value 1",
 title="Heatmap of Joint Distribution")

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 39/45

Given two random variables , the covariance is defined as

Exercise: compute the actual covariance for joint_distribution.

compute_covariance (generic function with 1 method)

Out[197]:

X,Y

Cov(X,Y) = E(XY) − E(X)E(Y)

In [198… function compute_covariance(joint_distribution)
 rows, cols = size(joint_distribution)

 marginal_X = sum(joint_distribution, dims=2) ./ cols
 marginal_Y = sum(joint_distribution, dims=1) ./ rows

 # We assume here that:
 # X takes values in 1...rows
 expected_X = sum((1:rows)' .* marginal_X)
 # Y takes values in 1...cols
 expected_Y = sum((1:cols) .* marginal_Y)

 # Compute the expected value of XY
 expected_XY = sum([i*j*joint_distribution[i,j] for i in 1:rows, j in 1:c

 # Compute the covariance
 covariance = expected_XY - expected_X * expected_Y

 return covariance
end

Out[198]:

In [199… compute_covariance(joint_distribution)

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 40/45

0.04545454545454497

0.046388099999999925

Covariance matrix

A covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance

matrix, or variance–covariance matrix) is a square matrix giving the covariance between

each pair of elements of a given random vector. In other words, if we have a random

vector with coordinates (simply meaning a collection of random variables

) the covariance matrix is , and . Notice that the

diagonal elements are the variances of the random variables.

Out[199]:

In [202… scov =0.0
num_samples = 10000
for _ ∈ 1:1000
 scov+=compute_covariance(simulate_joint_distribution(joint_distribution,
end
println(scov/1000)

n n

(X1, … ,Xn) n × n Kij = Cov(Xi,Xj)

n

In [210… using Distributions
using Plots

Define the Gaussians
gaussians = ["Full", "Diagonal", "Spherical"]

Average and Covariance
avg = [0.0, 0.0]
covariances = Dict(
 "Full" => [2 1.8; 1.8 2],
 "Diagonal" => [1 0; 0 3],
 "Spherical" => [1 0; 0 1]
)

Multivariate Gaussian PDF function
function gaussian_pdf(x, y, G)
 mvn = MvNormal(avg, covariances[G])
 return pdf(mvn, [x, y])
end

Defining the meshgrid
start_point = -5
stop_point = 5
num_samples = 100
x_points = range(start_point, stop=stop_point, length=num_samples)
y_points = range(start_point, stop=stop_point, length=num_samples)

Create a grid of x and y values
X = repeat(reshape(x_points, 1, :), length(y_points), 1)
Y = repeat(reshape(y_points, :, 1), 1, length(x_points))

Plotting function

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 41/45

function make_plots(gauss)
 Z = gaussian_pdf.(X, Y, gauss)

 # Contour plot
 contour_plot = contour(x_points, y_points, Z, title="Contour plot - $gau

 # Surface plot
 surface_plot = surface(x_points, y_points, Z, title="Surface plot - $gau

 return contour_plot, surface_plot
end

Generating plots for each Gaussian type
for gauss in gaussians
 contour_plot, surface_plot = make_plots(gauss)
 display(contour_plot)
 display(surface_plot)
end

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 42/45

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 43/45

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 44/45

Entropy
Here is a Julia code snippet for calculating the entropy of a single discrete random

variable and the joint entropy of two discrete random variables and . The code

assumes that you have the probability mass functions (PMFs) for and the joint PMF

for as inputs.

Entropy is a measure of uncertainty or randomness in a random variable. For a discrete

random variable with a probability mass function , the entropy, denoted , is

defined as:

where the sum is over all possible outcomes of . The logarithm is base 2 because

entropy is measured in bits.

For a joint distribution of two discrete random variables and , with a joint probability

mass function , the joint entropy is defined as:

The joint entropy measures the uncertainty in the entire system of two variables. It

naturally extends to variables. Try to generalize.

X X Y

X

X,Y

X p(x) H(X)

H(X) = −∑
x

p(x) log2 p(x)

X

X Y

p(x, y) H(X,Y)

H(X,Y) = −∑
x,y

p(x, y) log2 p(x, y)

n

1/22/24, 8:12 PM CS365 - Probability review with Julia

file:///Users/babis/GitHub/teaching-Github/cs365-spring24/CS365 - Probability review with Julia.html 45/45

Chain Rule for Entropy

For random variables, the chain rule for entropy provides a way to decompose the joint

entropy into conditional entropies:

This expresses the total entropy of a system as the sum of the entropy of the first

variable and the conditional entropies of each subsequent variable given the previous

variables.

Entropy is a fundamental concept in information theory and has applications in various

fields, including communications, data compression, and machine learning.

Entropy of X: 1.0296530140645737
Joint Entropy of X and Y: 2.094640938826062

n

H(X1,X2, … ,Xn) = H(X1) + H(X2|X1) + … + H(Xn|X1,X2, … ,Xn−1)

In [203… using LinearAlgebra: dot

function entropy(probabilities::Vector{Float64})
 -dot(probabilities, log.(probabilities))
end

function joint_entropy(joint_probabilities::Matrix{Float64})
 -sum(joint_probabilities .* log.(joint_probabilities))
end

Example usage:
Single variable X with probabilities for each state
prob_X = [0.2, 0.3, 0.5]
entropy_X = entropy(prob_X)

Joint distribution of two variables X and Y
joint_prob_XY = [0.1 0.1 0.1; 0.1 0.2 0.1; 0.05 0.05 0.2]
entropy_XY = joint_entropy(joint_prob_XY)

println("Entropy of X: $entropy_X")
println("Joint Entropy of X and Y: $entropy_XY")

In []:

