CS365
Foundations of Data Science

Vector Calculus and Optimization

Charalampos E. Tsourakakis ctsourak@bu.edu

Chapters 5 and 7

 Vector calculus
MATHEMAIICS Fon MACHIIIE LEARIIIIUG

Plotting $f: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$

Consider a vector $\mathrm{p}=[\mathrm{x}, \mathrm{y}]$.

- How do we plot functions of p such as the following:

$$
\begin{aligned}
& z=[4,3] p=4 x+3 y \\
& z=p^{T} p=x^{2}+y^{2} \\
& z=p^{T} A p=[x, y]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=-x^{2}+y^{2} \\
& z=p^{T} A p=[x, y]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2 x^{2}+y^{2}
\end{aligned}
$$

$z=4 x+3 y$

GeoGebra 3D Calculator
$<$: : SIGNIN

$z=x^{2}+y^{2}$

GeoGebra 3D Calculator

\bigcirc	$a(x, y)=x^{2}+y^{2}$	\vdots
+	1	

良
$z=x^{2}-y^{2}$

GeoGebra 3D Calculator

$z=0.1 x^{2}+2 y^{2}$

GeoGebra 3D Calculator

Level curves

The level curves of a function f of two variables x, y are the curves with equation

$$
f(x, y)=c
$$

where c is a constant in the range of f .

Constant elevation curves of Grand Canyon (source here)

Geogebra calculator

Online examples : https://www.geogebra.org/m/M2P4KsRe, see also desmos

Level Curves

Author: Sarah Harrelson

Level curves

Online examples : https://www.geogebra.org/m/M2P4KsRe, see also desmos
Level Curves

Hyperbolic paraboloid

- Why is it called so?
- What would be an Ellipstic paraboloid?

Author: Sarah Harrelson

Conic sections

Diagonal Slice

Ellipse

Horizontal Slice

Circle

Deep Vertical Slice

Hyperbola

Vertical Slice

> Parabola

Conic sections

Intersecting Lines

Single Line

Single Point
$\square \square$
$\square \square \square$
$\square \square \square \square \square \square$
$\square$$\square \square$
\square
\square $\square \square \square$

$$
\square
$$

\square
\square
 \square
$\square \square$
$\square \quad \square$

General form of conic sections

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Ellipse

Hyperbola

- Identify the values of A and C from the general form.
- If A and C are nonzero, have the same sign, and are not equal to each other, then the graph may be an ellipse.
- If A and C are equal and nonzero and have the same sign, then the graph may be a circle.
- If A and C are nonzero and have opposite signs, then the graph may be a hyperbola.
- If either A or C is zero, then the graph may be a parabola.

Conic sections are foundational across disciplines!

Examples

Conic Sections	Example
ellipse	$4 x^{2}+9 y^{2}=1$
circle	$4 x^{2}+4 y^{2}=1$
hyperbola	$4 x^{2}-9 y^{2}=1$
parabola	$4 x^{2}=9 y$ or $4 y^{2}=9 x$

Back to our hyperbolic paraboloid

Hyperbolic paraboloid

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2}=0 \Rightarrow(x-y) \cdot(x+y)=0 \\
& f(x, y)=c \Rightarrow \frac{x^{2}}{c}-\frac{y^{2}}{c}=1(\text { Hyperbola! })
\end{aligned}
$$

A refresher I: Single variable function

The difference quotient computes the slope of the secant line through two points of $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

$$
\frac{\delta y}{\delta x}=\frac{f(x+\delta x)-f(x)}{\delta x}
$$

The idea of the derivative $f^{\prime}(x)$ is that it is the slope of the tangent line at x to the curve.

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

What is the derivative of $d / d x\left(x^{n}\right)$?

A refresher II: Single variable function

Product rule:

$$
\begin{equation*}
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \tag{5.29}
\end{equation*}
$$

Quotient rule: $\quad\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
(5.30)

Sum rule:

$$
\begin{equation*}
(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x) \tag{5.31}
\end{equation*}
$$

Chain rule:

$$
\begin{equation*}
(g(f(x)))^{\prime}=(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x) \tag{5.32}
\end{equation*}
$$

Source Chapter 5 https://mml-book.github.io/ (Mandatory reading)

Matrix calculus

- Scalar field, a function f that maps vectors to reals $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& z=[4,3] p=4 x+3 y \\
& z=p^{T} p=x^{2}+y^{2}
\end{aligned}
$$

- Vector field, or vector valued functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Gradient of a scalar field

- Partial derivative at $x=\left(x_{1}, \ldots, x_{n}\right)$

$$
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{h}, i=1, \ldots, n
$$

- We collect them at the row vector known as the gradient of the function \boldsymbol{f}

$$
\nabla f(x)=\nabla_{x} f=\operatorname{grad} f=\left(\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \ldots & \frac{\partial f}{\partial x_{n}}
\end{array}\right) \in \mathbb{R}^{1 \times n}
$$

Remark: the gradient collects the slopes in the positive x_{i} direction for all $i=1 . . n$.

Directional derivative

- Instead of computing the slopes in the positive x_{i} directions for all i=1..n, we can compute the derivative along any direction.
- Directional derivative

$$
\nabla_{v} f(x)=D_{v} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h}=\nabla f(x) \cdot v
$$

- Exercise

Let $f(x, y)=x^{2} y$. Find the following:

- The gradient of f
- The gradient of f at $(3,2)$
$\square \square-$
- \quad The derivative of f in the direction of $(1,2)$ at the point $(3,2)$.
\square
\square

Hessian of a scalar field

If all second partial derivatives of f exist and are continuous over the domain of the function, then the Hessian matrix is a square matrix, usually defined and arranged as follows:

$$
\mathbf{H}_{f}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Example

- Compute the Hessian of $f(x, y)=x y(x+y)$ at $(1,1)$.

$$
H_{f}(x, y)=\left(\begin{array}{cc}
2 y & 2(x+y) \\
2(x+y) & 2 x
\end{array}\right), H_{f}(1,1)=\left(\begin{array}{ll}
2 & 4 \\
4 & 2
\end{array}\right)
$$

- The symmetry of H is not a coincidence; of $f(x, y)$ is a twice continuously differentiable function, then

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

Taylor Series

Taylor polynomial f:R $\rightarrow \mathbf{R}$

The Taylor polynomial of degree n of $f: R \rightarrow R$ at x_{0} is defined as
where $f^{(k)}\left(x_{0}\right)$ is the k-th derivative of f at x_{0}.

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

Taylor series $\mathbf{f : R} \rightarrow \mathbf{R}$

The Taylor series of of a smooth function $f: R \rightarrow R$ at x_{0} is defined as

$$
T_{\infty}(x)=\sum_{k=0}^{+\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

For $\mathrm{x}_{0}=0$, we obtain Maclaurin series as a special instance of The Taylor series.
If , then f is called analytic.

$$
f(x)=T_{\infty}(x)
$$

Examples

- Taylor polynomial T_{6} for $f(x)=x^{4}$ evaluated at $x_{0}=1$

$$
T_{6}(x)=1+4(x-1)+6(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}+0=\cdots=x^{4}
$$

- Taylor series for trigonometric functions $\cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k)!} x^{2 k}$
- https://en.wikipedia.org/wiki/Taylor series

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} x^{2 k+1}
$$

Taylor series $\mathbf{f :} \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$

Example (whiteboard)

$$
f(x) \approx f\left(x_{0}\right)+\nabla f\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} H_{f}\left(x_{0}\right)\left(x^{m p l e}\left(x_{0}\right)\right.
$$

Chain rule

$$
\frac{\partial}{\partial x}(g \circ f)(x)=\frac{\partial}{\partial x} g(f(x))=\frac{\partial g}{\partial f} \frac{\partial f}{\partial x}
$$

- Examples:

Consider a function $f: R^{2} \rightarrow R$ of two variables x_{1}, x_{2}. Furthermore, suppose that x_{1}, x_{2} are functions of a variable t.

$$
\frac{d f}{d t}=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial x_{1}(t)}{\partial t} \\
\frac{\partial x_{2}(t)}{\partial t}
\end{array}\right]
$$

Consider a function $f: R^{2} \rightarrow R$ of two variables x_{1}, x_{2}. Furthermore, suppose that x_{1}, x_{2} are functions of two variables s, t.

$$
\text { Let } q=[s, t] \cdot \frac{d f}{d q}=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{\partial x_{1}(s, t)}{\partial s} & \frac{\partial x_{1}(s, t)}{\partial t} \\
\frac{\partial x_{2}(s, t)}{\partial s} & \frac{\partial x_{2}(s, t)}{\partial t}
\end{array}\right]
$$

Chain rule examples

$$
\text { Let } z=f(x, y) \cdot \frac{d z}{d(u, t)}=\left[\begin{array}{ll}
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial x(u, v)}{\partial u} & \frac{\partial x(u, v)}{\partial v} \\
\frac{\partial y(u, v)}{\partial u} & \frac{\partial y(u, v)}{\partial v}
\end{array}\right]
$$

Generalized chain rule

Let $\mathrm{z}=\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$ be a scalar field of m variables, each of which is a differential function of n independent variables $x_{i}=x i\left(t_{1}, \ldots, t_{n}\right)$. Then,

$$
\frac{\partial z}{\partial t_{i}}=\sum_{j=1}^{m} \frac{\partial z}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{i}}=\frac{\partial z}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\ldots+\frac{\partial z}{\partial x_{m}} \frac{\partial x_{m}}{\partial t_{i}}, i=1, \ldots, n
$$

Examples

$$
z=f(x, y)=x^{2}-3 x y+2 y^{2}
$$

Calculate the derivative of z with respect to t , where $x=x(t)=3 \sin (2 t)$

$$
y=y(t)=4 \cos (2 t)
$$

Solution:

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=(2 x-3 y) 6 \cos (2 t)+(-3 x+4 y)(-8 \sin (2 t))= \\
& =6 \cos (2 t)(6 \sin (2 t)-12 \cos (2 t))-8 \sin (2 t)(-9 \sin (2 t)+16 \cos (2 t)) \\
& =\ldots=-46 \sin (4 t)-72 \cos (4 t)
\end{aligned}
$$

Examples

$f(x, y)=4 x^{2}+3 y^{2}, x(t)=\sin (t), y(t)=\cos (t)$
We compute $\frac{\partial z}{\partial x}=8 x, \frac{\partial z}{\partial y}=6 y, \frac{d x}{d t}=\cos t, \frac{d y}{d t}=-\sin t$.

Now we apply the chain rule

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=8 x \cos t-6 y \sin t=8 \sin t \cos t-6 \cos t \sin t=2 \cos t \sin t
$$

1st order derivatives of a vector field: Jacobian

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

The collection of all first-order derivatives of a vector field/vector-valued function $f: R^{n} \rightarrow R^{m}$ is called the Jacobian.

$$
\begin{aligned}
J & =\nabla_{x} f=\frac{\mathrm{d} f(x)}{\mathrm{d} \boldsymbol{x}}=\left[\begin{array}{lll}
\frac{\partial f(x)}{\partial x_{1}} & \cdots & \frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right],
\end{aligned}
$$

Jacobian

Let $\begin{aligned} & y_{1}=-2 x_{1}+x_{2} \\ & y_{2}=x_{1}+x_{2}\end{aligned}$. The Jacobian is simply $J=\left[\begin{array}{ll}\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}\end{array}\right]=\left[\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right]$

This example generalizes to the following. Let $f(x)=A x$, where A is a mxn matrix, and x is an $m \times 1$ vector. Then,

$$
\frac{d f}{d x}=A
$$

Gradient of a Least-Squares Loss in a Linear Model

Parallelogram of maximum area

Find paralellogram of maximum area with a given perimeter.
$\max _{a, b, h} a h$
$2 a+2 b=\ell$
$h \leq b$
$a, b, h \geq 0$

Clearly given $\mathrm{a}, \mathrm{b}, \mathrm{h}=\mathrm{b}$ is an obvious solution.
Thus we get the following equivalent problem:

Parallelogram of maximum area

Find paralellogram of maximum area with a given perime

Optimal solution $a=b=l / 4$ ($h=b$)

GeoGebra Graphing Calculator

Transportation problem

Minimize the cost of goods transported from

- a set of m sources to ..
- ... a set of n destinations
- subject to the supply and demand of the sources and destination respectively

Given:

- a_{1}, \ldots, a_{m} : units to transfer from sources
- $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}$: units to receive by destinations
- $c_{i j}$: cost of transferring a unit from source i to destination j

Transportation problem

- Find the quantities xij to be transferred from source i to destination j for

$$
\begin{aligned}
& \mathrm{i}=1, \ldots, \mathrm{~m}, \mathrm{j}=1, . ., \mathrm{n} . \\
& \sum_{j=1}^{m i n} \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& \sum_{i=1}^{m} x_{i j}=a_{i}, i=1, \ldots, m \\
& x_{i j} \geq 0
\end{aligned}
$$

A (not so) Toy ML problem

Minimization

$\min _{x \in F} f(x)$
 $$
x \in F
$$

Let $\mathrm{f}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$.

- When $\mathrm{F}=\mathrm{R}^{\mathrm{n}}$, the optimization is unconstrained.
- When $F=\left\{x \in \mathbb{R}^{n}: h(x)=0, g(x) \leq 0\right\}$ where $h: R^{n} \rightarrow R^{m}, g: R^{n} \rightarrow R^{k}$ are real functions the problem is called constrained.

But what does it mean to be a minimum? And why don't we talk about maximization?

Minimization

- Minimize f is equivalent to maximize -f.
- Definition: A point x^{*} is called a local minimum of f in F if there exist $\varepsilon>0$ such that $f(x) \geq f\left(x^{\star}\right)$ for all x in F such that $\left\|x-x^{\star}\right\| \leq \epsilon$.

If for all $x \neq x^{\star},\left\|x-x^{\star}\right\| \leq \epsilon, \quad f(x)>f\left(x^{\star}\right)$ then x^{*} is called strict local minimum.

Minimization

- Definition: A point x^{*} is called a global minimum of f in F if $f(x) \geq f\left(x^{\star}\right)$

If $f(x)>f\left(x^{\star}\right)$, for all $x \neq x^{\star}$ then x^{*} is called strict global minimum.

Does the minimum always exist?

What is the minimum of $f(x)=-0.5 x+4$ where $0 \leq x<2$

- The minimum does not exist.
- Set $x=2-\varepsilon, \varepsilon>0$. What is $f(x)$?
- Now set $x=2-\varepsilon / 2, \varepsilon>0$. What is $f(x)$ now?

Weierstrass theorem states that if $f: R^{n} \rightarrow R$ is continuous, and F is compact then f has a global minimum in F .

Theorem (1st order necessary conditions)

If $f: R^{n} \rightarrow R$ is continuous, differentiable function and x^{*} is a local minimum of f, then

$$
\nabla f\left(x^{\star}\right)=0
$$

Remark: Necessary, but not sufficient.

Example: least squares

- $A^{m \times n}$ matrix (assume columns are independent)
- $b^{m \times 1}$ vector

Least squares problem: Solve $\min _{x}\|A x-b\|^{2}$

Least squares

Question: Why can we invert ($\left.\mathrm{A}^{\top} \mathrm{A}\right)$?

$$
\begin{aligned}
f(x)=\|A x-b\|^{2} & =(A x-b)^{T}(A x-b) \\
& =x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b \\
\nabla f(x) & =2 x^{T} A^{T} A-2 b^{T} A=0 \Rightarrow \\
A^{T} A x & =A^{T} b \Rightarrow x=\left(A^{T} A\right)^{-1} A^{T} b
\end{aligned}
$$

$$
\begin{aligned}
A^{T} A x= & 0 \Rightarrow x^{T} A^{T} A x=0 \Rightarrow \\
& \|A x\|^{2}=0 \Rightarrow A x=0 \Rightarrow \\
x= & 0(w h y ?)
\end{aligned}
$$

Normal equations
Turns out that this is the strict global minimum since $f(x)$ is convex (to be discussed later)

Practice problem

What is the best-fit function of the following form that passes through the given points?

$$
y=A \cos (x)+B \sin (x)+C \cos (2 x)+D
$$

[^0]
Stationary points

Consider the set of stationary points of f

$$
D=\left\{x^{\star} \in \mathbb{R}^{n}: \nabla f\left(x^{\star}\right)=0\right\}
$$ These include:

- Local minima
- Local maxima
- Saddle points

How do we recognize the type of a stationary point? (More on next lecture, but for now...)

Saddle point

Let $\quad f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$
The point (x^{*}, y^{*}) in R^{n+m} is a saddle point:

$f\left(x^{\star}, y\right) \leq f\left(x^{\star}, y^{\star}\right) \leq f\left(x, y^{\star}\right) \forall x:\left\|x-x^{\star}\right\| \leq \epsilon, \forall y:\left\|y-y^{\star}\right\| \leq \epsilon$

- For fixed $y=y^{*}$, f has a local min at x^{*}
- For fixed $x=x^{*}, f$ has a local max at y^{*}

Theorem (2nd order necessary conditions)

If $f: R^{n} \rightarrow R$ is continuous, twice differentiable function and x^{*} is a local minimum of f, then

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =0 \\
x^{T} \frac{\partial^{2} f\left(x^{\star}\right)}{\partial x^{2}} x & \geq 0 \text { for all } x \in \mathbb{R}^{n}
\end{aligned}
$$

Necessary but not sufficient

- The previous theorem provides necessary but not sufficient conditions.
- Let's see an example. Consider the following unconstrained minimization problem ($\mathrm{F}=\mathrm{R}^{2}$)

$$
\min _{x_{1}, x_{2}}\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}+x_{3}\right)^{3}
$$

Necessary but not sufficient

From the 1st order necessary condition we obtain

$$
\begin{aligned}
\nabla f\left(x^{\star}\right) & =0 \Rightarrow\left[2\left(x_{1}-x_{2}\right)+3\left(x_{1}+x_{2}\right)^{2},-2\left(x_{1}-x_{2}\right)+3\left(x_{1}+x_{2}\right)^{2}\right]=[0,0] \Rightarrow \\
x_{1} & =0, x_{2}=0 \Rightarrow x^{\star}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Necessary but not sufficient

The Hessian of f is $\quad H_{f}=\frac{\partial^{2} f}{\partial x^{2}}=\left[\begin{array}{cc}2+6\left(x_{1}+x_{2}\right) & -2+6\left(x_{1}+x_{2}\right) \\ -2+6\left(x_{1}+x_{2}\right) & 2+6\left(x_{1}+x_{2}\right)\end{array}\right]$
Thus, $\quad H_{f}\left(x^{\star}\right)=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$. The eigenvalues are 4,0, so the matrix
is positive semidefinite. Another way to see this is as follows:

$$
z^{T} H_{f}\left(x^{\star}\right) z=2 z_{1}^{2}-4 z_{1} z_{2}+2 z_{2}^{2}=2\left(z_{1}-z_{2}\right)^{2}, \quad \forall z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \in \mathbb{R}^{2}
$$

Necessary but not sufficient

However, x^{*} is not a local minimum. Let's see why. Consider the all-ones eigenvector corresponding to the 0 eigenvalue, and consider moving from x^{*} in this direction, i.e., consider
$x=x^{*}+a[1,1]^{\top}$ where $a<0$. Then the objective becomes $8 a^{3}<0=f\left(x^{*}\right)$

Theorem (2nd order sufficient conditions)

If $f: R^{n} \rightarrow R$ is continuous, twice differentiable function and x^{*} is a strict local minimum of f, then

$$
\begin{aligned}
\nabla f\left(x^{*}\right) & =0 \\
x^{T} \frac{\partial^{2} f\left(x^{\star}\right)}{\partial x^{2}} x & >0 \text { for all } x \in \mathbb{R}^{n}
\end{aligned}
$$

Gradient descent

Let's consider the linearization of $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$

$$
f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+O\left(\epsilon^{2}\right)
$$

Question: Assuming second-order terms are negligible, how would you choose ε to decrease the value of the function, i.e., $f(x+\varepsilon)<=f(x)$

$$
f\left(x-\eta f^{\prime}(x)\right)=f(x)-\eta\left(f^{\prime}(x)\right)^{2}+O\left(\eta^{2}\left(f^{\prime}(x)\right)^{2}\right), \eta>0
$$

$$
x \leftarrow x-\eta f^{\prime}(x), \eta>0
$$

Example $f(x)=x^{2}$.

Gradient descent
When $f: R^{n} \rightarrow R$, we use the gradient of f

$$
x \leftarrow x-\eta(\nabla f(x))^{T}, \eta>0
$$

Example

Consider a quadratic function in two dimensions

$$
f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 & 1 \\
1 & 20
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-\left[\begin{array}{l}
5 \\
3
\end{array}\right]^{\top}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

with gradient

$$
\nabla f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]^{\top}\left[\begin{array}{cc}
2 & 1 \\
1 & 20
\end{array}\right]-\left[\begin{array}{l}
5 \\
3
\end{array}\right]^{\top}
$$

Line

Suppose $\mathrm{x}_{1}, \mathrm{x}_{2}$ are two points in R^{n}. Points of the form

$$
y=\theta x_{1}+(1-\theta) x_{2}, \theta \in \mathbb{R}
$$

form the line passing through $\mathrm{x}_{1}, \mathrm{x}_{2}$

Affine set

Definition: A set C is affine if the line through any two distinct points lines in C.

- The idea generalizes to more than two points. An affine combination of k points $\mathrm{x}_{1} . ., \mathrm{x}_{\mathrm{k}}$ in C is $\theta_{1} x_{1}+\ldots+\theta_{k} x_{k}$ where $\theta_{1}+\ldots+\theta_{k}=1$
Claim: An affine set contains every affine combination of its points. (induction on the number of points)

Affine sets - Prove the following:

1. The solution set $\left\{x \mid A^{m \times n} x^{n x 1}=b^{m \times 1}\right\}$ is an affine set.
2. If C is an affine set, and x_{0} is in C , then the set

$$
V=C-x_{0}=\left\{x-x_{0} \mid x \in C\right\}
$$

is a subspace.
(Proofs on whiteboard)

Convex vs non-convex set

A set C is convex if the line segment between any two points in C lies in C, i.e., for any $\mathrm{x}_{1}, \mathrm{x}_{2}$ in C and for any, $0 \leq \theta \leq 1$

$$
\theta x_{1}+(1-\theta) x_{2} \quad \in C
$$

Hyperplanes

$$
\begin{aligned}
& a^{a^{T} x}=b, \\
& \text { where } \quad a \in \mathbb{R}^{n}, a \neq 0, b \in \mathbb{R}
\end{aligned}
$$

- b offset of the hyperplane from 0

Figure 2.6 Hyperplane in \mathbf{R}^{2}, with normal vector a and a point x_{0} in the hyperplane. For any point x in the hyperplane, $x-x_{0}$ (shown as the darker arrow) is orthogonal to a.

Halfspaces

- A hyperplane divides R^{n} into two halfspaces.
- Halfspaces are convex but not affine

Figure 2.7 A hyperplane defined by $a^{T} x=b$ in \mathbf{R}^{2} determines two halfspaces. Figure 2.7 A hyperplane defined by $a^{T} x=b$ in \mathbf{R}^{2} determines two halfspaces.
The halfspace determined by $a^{T} x \geq b$ (not shaded) is the halfspace extending in the direction a. The halfspace determined by $a^{T} x \leq b$ (which is shown shaded) extends in the direction $-a$. The vector a is the outward normal of this halfspace.

Convex function

A function $f: R n \rightarrow R$ is convex if its domain dom(f) is convex and if for all x, y in dom(f), and θ in $[0,1] \quad f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$

- It is strictly convex if the inequality is strict for all θ in $(0,1)$.
- f is concave if -f is convex.

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) between any two points on the graph lies above the graph.

Convex function, 1st order condition

Suppose f is differentiable. Then f is convex if its domain is a convex set and $\quad f(y) \geq f(x)+\nabla f(x)(y-x)$

Convex function, 2nd order condition

Assuming f is twice differentiable. f is convex iff f 's domain is convex and the Hessian is positive semidefinite

$$
x^{T} \frac{\partial^{2} f\left(x^{\star}\right)}{\partial x^{2}} x \geq 0, \quad \text { for all } x \in \mathbb{R}^{n}
$$

Exercise: Prove that $f(x, y)=x^{2} / y$ where x in R, and $y>0$ is convex.

Convex optimization

A constrained optimization problem is called a convex optimization problem if

$$
\begin{array}{cl}
\min f(x) & \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& a_{i}^{T} x-b_{i}=0, j=1, \ldots, p
\end{array}
$$

where f,gi's are convex functions.
Remark: the feasible set of a convex optimization problem is convex (why?)

Readings and Refs

Mandatory readings
[1] Chapters 5 and 7 https://mml-book.github.io/

Additional readings
[2] https://mathinsight.org/thread/multivar
[3] Libretexts in Math (conic sections), and multivariable calculus

[^0]: A $=(-5.7,2.28)$

 - $\mathrm{B}=(-3.62,0.64)$

 C $\mathrm{C}=(-2.24,-1.04)$

 - $\mathrm{D}=(1.86,2.32)$
 - $E=(2.58,-1.2)$
 - $F=(4.72,2)$
 - $G=(-1.92,2.48)$
 - $H=(-8,-1)$
 - $1=(4.52,-2.14)$
 - $J=(7.8,3.3)$

