CS365 Foundations of Data Science

Vector Calculus and Optimization

Charalampos E. Tsourakakis <u>ctsourak@bu.edu</u>

Chapters 5 and 7 Vector calculus

MATHEMATICS FOR MACHINE LEARNING

Plotting $f: \mathbb{R}^2 \rightarrow \mathbb{R}$

Consider a vector p=[x,y].

- How do we plot functions of p such as the following:

$$egin{aligned} &z=[4,3]p=4x+3y\ &z=p^Tp=x^2+y^2\ &z=p^TAp=[x,y]iggl[egin{aligned} -1&0\0&1\end{bmatrix}iggl[x\y \end{bmatrix}=-x^2+y^2\ &z=p^TAp=[x,y]iggl[2&0\0&1\end{bmatrix}iggl[x\y \end{bmatrix}=2x^2+y^2 \end{aligned}$$

z=x²+y²

GeoGebra 3D Calculator

<

Level curves

The level curves of a function f of two variables x,y are the curves with equation

$$f(x,y) = c$$

where c is a constant in the range of f.

Constant elevation curves of Grand Canyon (source <u>here</u>)

Geogebra calculator

Online examples : <u>https://www.geogebra.org/m/M2P4KsRe</u>, see also <u>desmos</u>

Level curves

Online examples : <u>https://www.geogebra.org/m/M2P4KsRe</u>, see also <u>desmos</u>

Hyperbolic paraboloid

- Why is it called so?
- What would be an Ellipstic paraboloid?

Level Curves

Conic sections

Conic sections

Conic sections are foundational across disciplines!

5.2 oz

Examples

Conic Sections	Example
ellipse	$4x^2 + 9y^2 = 1$
circle	$4x^2 + 4y^2 = 1$
hyperbola	$4x^2 - 9y^2 = 1$
parabola	$4x^2 = 9y \text{ or } 4y^2 = 9x$
	15

Back to our hyperbolic paraboloid

Hyperbolic paraboloid

$$f(x,y)=x^2-y^2=0 \Rightarrow (x-y)\cdot (x+y)+
onumber \ f(x,y)=c \Rightarrow rac{x^2}{c}-rac{y^2}{c}=1 \, (ext{Hyperbola!})$$

A refresher I: Single variable function

The difference quotient computes the slope of the secant line through two points of y=f(x).

$$rac{\delta y}{\delta x} = rac{f(x+\delta x)-f(x)}{\delta x}$$

The idea of the derivative f'(x) is that it is the slope of the tangent line at x to the curve.

$$rac{df}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$
 What is the derivative of d/dx(xⁿ)?

A refresher II: Single variable function

Product rule:
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$
 (5.29)
Quotient rule: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ (5.30)
Sum rule: $(f(x) + g(x))' = f'(x) + g'(x)$ (5.31)
Chain rule: $(g(f(x)))' = (g \circ f)'(x) = g'(f(x))f'(x)$ (5.32)
Source Chapter 5 https://mml-book.github.io/ (Mandatory reading)

Matrix calculus

- Scalar field, a function f that maps vectors to reals $f:\mathbb{R}^n
ightarrow\mathbb{R}$

$$egin{aligned} z &= [4,3]p = 4x + 3y \ z &= p^T p = x^2 + y^2 \end{aligned}$$

- Vector field, or vector valued functions $\ f:\mathbb{R}^n
ightarrow\mathbb{R}^m$


```
- Functions of matrices f(A).
```

Gradient of a scalar field

• Partial derivative at
$$x=(x_1,..,x_n)$$

$$rac{\partial f}{\partial x_i} = \lim_{h o 0} rac{f(x_{1,} \ \ldots, x_i + h, \ldots, x_n) - f(x_{1,} \ \ldots, x_i, \ldots, x_n)}{h}, \ i = 1, \ldots, n$$

• We collect them at the row vector known as the gradient of the function **f**

$$abla f(x) =
abla_x f = ext{grad} f = igg(rac{\partial f}{\partial x_1} \quad rac{\partial f}{\partial x_2} \quad \dots \quad rac{\partial f}{\partial x_n} igg) \in \mathbb{R}^{1 imes n}$$

Remark: the gradient collects the slopes in the positive x_i direction for all i=1..n.

Directional derivative

- Instead of computing the slopes in the positive x_i directions for all i=1..n, we can compute the derivative along any direction.
 - Directional derivative

$$abla_v f(x) = D_v f(x) = \lim_{h o 0} rac{f(x+hv) - f(x)}{h} =
abla f(x) \cdot v$$

- Exercise

- Let $f(x,y)=x^2y$. Find the following:
 - The gradient of f
 - The gradient of f at (3,2)
 - The derivative of f in the direction of (1,2) at the point (3,2).

Hessian of a scalar field

If all second partial derivatives of f exist and are continuous over the domain of the function, then the Hessian matrix is a square matrix, usually defined and arranged as follows:

 $\partial^2 f$

 $\partial^2 f \qquad \partial^2 f$

	$\overline{\partial x_1^2}$	$\overline{\partial x_1\partial x_2}$	•••	$\overline{\partial x_1 \partial x_n}$
$\mathbf{H}_f =$	$rac{\partial^2 f}{\partial x_2\partial x_1}$	$\frac{\partial^2 f}{\partial x_2^2}$		$rac{\partial^2 f}{\partial x_2 \ \partial x_n}$
	÷	÷	۰.	÷
	$\frac{\partial^2 f}{\partial x_n \partial x_1}$	$rac{\partial^2 f}{\partial x_n \ \partial x_2}$		$\frac{\partial^2 f}{\partial r^2}$
		$c w_n c w_2$		

Г

Example

- Compute the Hessian of f(x,y)=xy(x+y) at (1,1).

$$H_f(x,y) = egin{pmatrix} 2y & 2(x+y) \ 2(x+y) & 2x \end{pmatrix}, \, H_f(1,1) = egin{pmatrix} 2 & 4 \ 4 & 2 \end{pmatrix}$$

- The symmetry of H is not a coincidence; of f(x,y) is a twice continuously differentiable function, then

$$rac{\partial^2 f}{\partial x \partial y} = rac{\partial^2 f}{\partial y \partial x}$$

Taylor Series

Taylor polynomial $f: R \rightarrow R$

The Taylor polynomial of degree n of f:R \rightarrow R at x₀ is defined as

where f^(k)(x₀) is the k-th derivative of f at x₀. $T_n(x)=\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k$

Taylor series $f: R \rightarrow R$

The Taylor series of of a smooth function f:R \rightarrow R at x₀ is defined as

$$T_\infty(x) = \sum_{k=0}^{+\infty} rac{f^{(k)}(x_0)}{k!} {(x-x_0)}^k$$

For $x_0=0$, we obtain Maclaurin series as a special instance of The Taylor series.

If , then f is called analytic. $f(x) = T_\infty(x)$

Examples

Taylor series $f: \mathbb{R}^n \rightarrow \mathbb{R}$

Chain rule

-

$$\frac{\partial}{\partial x}(g \circ f)(x) = \frac{\partial}{\partial x}g(f(x)) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$$
Examples:
Consider a function $f:\mathbb{R}^2 \to \mathbb{R}$ of two variables x_1, x_2 . Furthermore, suppose that x_1, x_2 are functions of a variable t.

$$\frac{df}{dt} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix}$$
Consider a function $f:\mathbb{R}^2 \to \mathbb{R}$ of two variables x_1, x_2 . Furthermore, suppose that x_1, x_2 are functions of two variables s, t.

$$Let q = [s, t] \cdot \frac{df}{dq} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(s,t)}{\partial s} & \frac{\partial x_1(s,t)}{\partial t} \\ \frac{\partial x_2(s,t)}{\partial s} & \frac{\partial x_2(s,t)}{\partial t} \end{bmatrix}$$

Chain rule examples

Generalized chain rule

Let $z=f(x_1,...,x_m)$ be a scalar field of m variables, each of which is a differential function of n independent variables $x_i = x_i(t_1,..,t_n)$. Then, $rac{\partial z}{\partial t_i} = \sum_{j=1}^m rac{\partial z}{\partial x_j} rac{\partial x_j}{\partial t_i} = rac{\partial z}{\partial x_1} rac{\partial x_1}{\partial t_i} + \ldots + rac{\partial z}{\partial x_m} rac{\partial x_m}{\partial t_i}, \, i=1,\ldots,n$

Examples

Calculate the derivative of z with respect to t, where
$$\begin{aligned} z &= f(x,y) = x^2 - 3xy + 2y^2 \\ x &= x(t) = 3\sin(2t) \\ y &= y(t) = 4\cos(2t) \end{aligned}$$
Solution:

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt} = (2x - 3y)6\cos(2t) + (-3x + 4y)(-8\sin(2t)) = \\ &= 6\cos(2t)(6\sin(2t) - 12\cos(2t)) - 8\sin(2t)(-9\sin(2t) + 16\cos(2t)) = \\ &= \dots = -46\sin(4t) - 72\cos(4t) \end{aligned}$$

1st order derivatives of a vector field: Jacobian

$$f(x_1,\ldots,x_n) = egin{bmatrix} f_1(x_1,\ldots,x_n) \ \ldots \ f_m(x_1,\ldots,x_n) \end{bmatrix}$$

The collection of all first-order derivatives of a vector field/vector-valued function $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$ is called the Jacobian.

$$J = \nabla_x f = \frac{\mathrm{d}f(x)}{\mathrm{d}x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n} \\ \\ \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \\ \vdots & & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \cdots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix},$$

Jacobian

Let
$$\begin{array}{l} y_1 = -2x_1 + x_2 \\ y_2 = x_1 + x_2 \end{array}$$
. The Jacobian is simply $J = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}$
This example generalizes to the following. Let f(x)=Ax, where A is a mxn matrix, and x is an mx1 vector. Then,

$$\frac{df}{dx} = A$$

35

Gradient of a Least-Squares Loss in a Linear Model

Consider the linear model

$$egin{aligned} y^{n imes 1} &= \Phi^{n imes d} heta^{d imes 1} \ L(e) &= \|e\|^2 \ e(heta) &= y - \Phi heta \end{aligned}$$

Let's prove that
$$\ rac{\partial L}{\partial heta} = -2ig(y^T - heta^T \Phi^Tig) \Phi$$

(whiteboard, see also example 5.11 <u>here</u>)

Parallelogram of maximum area

Find paralellogram of maximum area with a given perimeter.

$$egin{array}{l} \max {ah}\ a,b,h \ 2a+2b=\ell\ h\leq b\ a,b,h\geq 0 \end{array}$$

Clearly given a,b, h=b is an obvious solution.

Thus we get the following equivalent problem:

Parallelogram of maximum area

Find paralellogram of maximum area with a given perime

$$egin{array}{c} \max {ab}\ a,b & = \ell\ a,b \geq 0 \end{array}$$

Transportation problem

Minimize the cost of goods transported from

- a set of m sources to ..
- ... a set of n destinations
 - subject to the supply and demand of the sources and destination 0 respectively

Given:

- a₁,...,a_m : units to transfer from sources
 b₁,...,b_n : units to receive by destinations
- c_{ii}: cost of transferring a unit from source **i** to destination **j**

Transportation problem

- Find the quantities xij to be transferred from source i to destination j for

i=1,...,n, j=1,...,n.
$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

 $\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n$
 $x_{ij} \ge 0$

A (not so) Toy ML problem

Minimization

$$\min_{x\in F}\;f(x)$$

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}$.

- When F=Rⁿ, the optimization is unconstrained.
- When $F = \{x \in \mathbb{R}^n : h(x) = 0, g(x) \le 0\}$ where h:Rⁿ \rightarrow R^m, g:Rⁿ \rightarrow R^k are real functions the problem is called *constrained*.

But what does it mean to be a minimum? And why don't we talk about maximization?

Minimization

- Minimize f is equivalent to maximize -f.
- **Definition**: A point x^* is called a **local minimum** of f in F if there exist $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all x in F such that $||x x^*|| \le \epsilon$.

If for all $x \neq x^*$, $||x - x^*|| \leq \epsilon$, $f(x) > f(x^*)$ then x^{*} is called strict local minimum.

Minimization

• **Definition**: A point x^{*} is called a **global minimum** of f in F if $f(x) \ge f(x^*)$

If $f(x) > f(x^{\star})$, for all $x \neq x^{\star}$ then x^{*} is called **strict global minimum**.

Does the minimum always exist?

What is the minimum of f(x) = -0.5x + 4 where $0 \le x < 2$

- The minimum does not exist.
- Set $x=2-\epsilon$, $\epsilon>0$. What is f(x)?
- Now set $x=2-\epsilon/2$, $\epsilon>0$. What is f(x) now?

Sufficient conditions

Weierstrass theorem states that if $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is continuous, and F is compact then f has a global minimum in F.

Theorem (1st order necessary conditions)

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, differentiable function and x^* is a local minimum of f, then

$$abla f(x^\star)=0$$

Remark: Necessary, but not sufficient.

Example: least squares

- A^{mxn} matrix (assume columns are independent)
- b^{mx1} vector

Least squares problem: Solve $min_x ||Ax-b||^2$

Least squares

Question: Why can we invert (A^TA)?

$$f(x) = \|Ax - b\|^{2} = (Ax - b)^{T}(Ax - b)$$

$$= x^{T}A^{T}Ax - 2x^{T}A^{T}b + b^{T}b$$

$$|A^{T}Ax = 0 \Rightarrow x^{T}A^{T}Ax = 0 \Rightarrow$$

$$\|Ax\|^{2} = 0 \Rightarrow Ax = 0 \Rightarrow$$

$$x = 0 (why?)$$

Normal equations

Turns out that this is the strict global minimum since f(x) is convex (to be discussed later)

Practice problem

What is the best-fit function of the following form that passes through the given points? $y = A\cos{(x)} + B\sin{(x)} + C\cos{(2x)} + D$

Stationary points

Consider the set of stationary points of f These include:

$$D=\{x^{\star}\in \mathbb{R}^n:
abla f(x^{\star})=0\}$$

- Local minima
- Local maxima
- Saddle points

How do we recognize the type of a stationary point? (More on next lecture, but for now...)

Saddle point

Let $f: \mathbb{R}^{n+m} \to \mathbb{R}$

The point (x*,y*) in R^{n+m} is a saddle point:

 $f(x^\star,y) \leq f(x^\star,y^\star) \leq f(x,y^\star) \, orall x: \|x-x^\star\| \leq \epsilon, orall y: \|y-y^\star\| \leq \epsilon$

- For fixed y=y*, f has a local min at x*
- For fixed x=x*, f has a local max at y*

Theorem (2nd order necessary conditions)

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, twice differentiable function and x^* is a local minimum of f, then

$$egin{aligned}
abla f(x^{\star}) &= 0 \ x^T rac{\partial^2 f(x^{\star})}{\partial x^2} x &\geq 0 \ ext{ for all } x \in \mathbb{R}^n \end{aligned}$$

- The previous theorem provides necessary but not sufficient conditions.
- Let's see an example. Consider the following unconstrained minimization problem (F=R²)

$$\min_{x_{1,}x_{2}}\left(x_{1}-x_{2}
ight)^{2}+\left(x_{1}+x_{3}
ight)^{3}$$

From the 1st order necessary condition we obtain

$$egin{aligned}
abla f(x^{\star}) &= 0 \Rightarrow \left[2(x_1 - x_2) + 3(x_1 + x_2)^2, \ -2(x_1 - x_2) + 3(x_1 + x_2)^2
ight] = [0, 0] \Rightarrow \ x_1 &= 0, \, x_2 = 0 \Rightarrow x^{\star} = egin{bmatrix} 0 \ 0 \end{bmatrix} \end{aligned}$$

The Hessian of f is
$$H_f = rac{\partial^2 f}{\partial x^2} = egin{bmatrix} 2+6(x_1+x_2) & -2+6(x_1+x_2) \\ -2+6(x_1+x_2) & 2+6(x_1+x_2) \end{bmatrix}$$

Thus, $H_f(x^*) = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$. The eigenvalues are 4,0, so the matrix

is positive semidefinite. Another way to see this is as follows: $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$

$$z^T H_f(x^\star) z = 2 z_1^2 - 4 z_1 z_2 + 2 z_2^2 = 2 (z_1 - z_2)^2, \; orall z = egin{bmatrix} z_1 \ z_2 \end{bmatrix} \in \mathbb{R}^2$$

However, x^* is not a local minimum. Let's see why. Consider the all-ones eigenvector corresponding to the 0 eigenvalue, and consider moving from x^* in this direction, i.e., consider

 $x = x^* + a[1,1]^T$ where a<0. Then the objective becomes $8a^3 < 0 = f(x^*)$

Theorem (2nd order sufficient conditions)

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, twice differentiable function and x^* is a strict local minimum of f, then

$$egin{aligned}
abla f(x^{\star}) &= 0 \ x^T rac{\partial^2 f(x^{\star})}{\partial x^2} x &> 0 \ ext{ for all } x \in \mathbb{R}^n \end{aligned}$$

Gradient descent

Let's consider the linearization of f:R \rightarrow R $f(x + \epsilon) = f(x) + \epsilon f'(x) + O(\epsilon^2)$ Question: Assuming second-order terms are negligible, how would you choose ϵ to decrease the value of the function, i.e., $f(x+\epsilon) \leq f(x)$ $f(x - \eta f'(x)) = f(x) - \eta (f'(x))^2 + O(\eta^2 (f'(x))^2), \eta > 0$ $x \leftarrow x - \eta f'(x), \eta > 0$

Example $f(x)=x^2$.

Gradient descent

When $f: \mathbb{R}^n \rightarrow \mathbb{R}$, we use the gradient of f

$$x \leftarrow x - \eta (
abla f(x))^T, \, \eta > 0$$

Example

Consider a quadratic function in two dimensions

$$f\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \frac{1}{2} \begin{bmatrix}x_1\\x_2\end{bmatrix}^{\top} \begin{bmatrix}2 & 1\\1 & 20\end{bmatrix} \begin{bmatrix}x_1\\x_2\end{bmatrix} - \begin{bmatrix}5\\3\end{bmatrix}^{\top} \begin{bmatrix}x_1\\x_2\end{bmatrix}$$

with gradient

$$\nabla f\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1\\x_2\end{bmatrix}^{\top} \begin{bmatrix}2 & 1\\1 & 20\end{bmatrix} - \begin{bmatrix}5\\3\end{bmatrix}^{\top}.$$

Line

Suppose x_1, x_2 are two points in \mathbb{R}^n . Points of the form

$$y= heta x_1+(1- heta)x_2,\, heta\in\mathbb{R}$$

form the line passing through x_1, x_2

Affine set

Definition: A set C is affine if the line through any two distinct points lines in C.

- The idea generalizes to more than two points. An affine combination of k points $x_1, ..., x_k$ in C is $\theta_1 x_1 + \ldots + \theta_k x_k$ where $\theta_1 + \ldots + \theta_k = 1$

Claim: An affine set contains every affine combination of its points.

(induction on the number of points)

Affine sets - Prove the following:

- 1. The solution set $\{x | A^{mxn}x^{nx1} = b^{mx1}\}$ is an affine set.
- 2. If C is an affine set, and x_0 is in C, then the set $V = C x_0 = \{x x_0 \mid x \in C\}$

is a subspace.

(Proofs on whiteboard)

Convex vs non-convex set

A set C is convex if the line segment between any two points in C lies in C, i.e., for any x_1, x_2 in C and for any , $0 \le \theta \le 1$ $\theta x_1 + (1 - \theta) x_2 \in C$

Hyperplanes

$$egin{aligned} & a^Tx=b, \ where & a \in \mathbb{R}^n, \, a
eq 0, b \in \mathbb{R} \end{aligned}$$

- b offset of the hyperplane from 0

Figure 2.6 Hyperplane in \mathbb{R}^2 , with normal vector a and a point x_0 in the hyperplane. For any point x in the hyperplane, $x - x_0$ (shown as the darker arrow) is orthogonal to a.

Halfspaces

- A hyperplane divides Rⁿ into two halfspaces.
- Halfspaces are convex but not affine

Figure 2.7 A hyperplane defined by $a^T x = b$ in \mathbb{R}^2 determines two halfspaces. The halfspace determined by $a^T x \ge b$ (not shaded) is the halfspace extending in the direction a. The halfspace determined by $a^T x \le b$ (which is shown shaded) extends in the direction -a. The vector a is the outward normal of this halfspace.

Convex function

A function f:Rn \rightarrow R is convex if its domain dom(f) is convex and if for all x,y in dom(f), and θ in [0,1] $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

- It is strictly convex if the inequality is strict for all θ in (0,1).

- f is concave if -f is convex.

(y, f(y))(x, f(x))

Figure 3.1 Graph of a convex function. The chord (*i.e.*, line segment) between any two points on the graph lies above the graph.

Convex function, 1st order condition

Suppose f is differentiable. Then f is convex if its domain is a convex set and $f(y) \ge f(x) + \nabla f(x)(y-x)$

Convex function, 2nd order condition

Assuming f is twice differentiable. f is convex iff f's domain is convex and the Hessian is positive semidefinite

Exercise: Prove that $f(x,y)=x^2/y$ where x in R, and y>0 is convex.

Convex optimization

A constrained optimization problem is called a convex optimization problem if $\min f(x)$

$$egin{aligned} ext{subject to} & g_i(x) \leq 0\,,\, i=1,\dots m \ & a_i^T x - b_i = 0,\, j=1,\dots,p \end{aligned}$$

where f,gi's are convex functions.

Remark: the feasible set of a convex optimization problem is convex (why?)

Readings and Refs

Mandatory readings	
[1] Chapters 5 and 7 <u>https://mml-book.github.io/</u>	6 mm 0
Additional readings	
[2] <u>https://mathinsight.org/thread/multivar</u>	
[3] Libretexts in Math (conic sections), and multivariable calculus	
	72