CS365
Foundations of Data Science

Vector Calculus and
Optimization

Charalampos E. Tsourakakis
ctsourak@bu.edu



mailto:ctsourak@bu.edu

- ATHEATICS ot
Chapters > and / FNITTARTITIL

Vector calculus

¢ g“?
fi
S

# Marc Peter Deisenroth
A. Aldo Faisal
Cheng Soon Ong



https://mml-book.github.io/

Plotting f:R2-R

Consider a vector p=[x,y].

How do we plot functions of p such as the following:
z=14,3|p = 4x + 3y
T 2 2
z=pp=z"+y

—1 0|z
z:pTAp:[w’y]lo 1”3/]:_xz+y2

2 0|z
==pap=lo y][o 1] [y]:2m2+y2



Z=4x+3y

GeoGebra 3D Calculator < H SIGNIN
©  alxy) = 4x+3y i e o
+ Input...
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https://www.geogebra.org/3d?lang=en

z:)(2+y2

GeoGebra 3D Calculator <
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https://www.geogebra.org/3d?lang=en

GeoGebra 3D Calculator <
O  axy) =x-y : -~
—+ Input...

GeoGebra 3D Calculator




2=0.1x2+2y?

GeoGebra 3D Calculator

ii SIGNI

T
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a(x,y) = 0.1x2+2y?

Input...

& GeoGebra 3D Calculator




Level curves

The level curves of a function f of two variables x,y are the curves with equation

f(z,y) =c

where cis a constant in the range of f.

Constant elevation curves of Grand Canyon
(source here)



https://www.math.tamu.edu/~mpilant/math696/m696_240/jsamayoa/public_html/levelcurves.html

Geogebra calculator

Online examples : https://www.geogebra.org/m/M2P4KsRe, see also desmos

Level Curves

Author: Sarah Harrelson

N



https://www.geogebra.org/m/M2P4KsRe
https://www.desmos.com/calculator/scxe341uyn

Level curves

Online examples : https://www.geogebra.org/m/M2P4KsRe, see also desmos

Level Curves

Author: Sarah Harrelson

Hyperbolic paraboloid .

- Why is it called so?
- What would be an
Ellipstic paraboloid?

-3

-4

fo=fey ] — @
k=5

0



https://www.geogebra.org/m/M2P4KsRe
https://www.desmos.com/calculator/scxe341uyn
https://mathworld.wolfram.com/HyperbolicParaboloid.html

Conic sections
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Conic sections

Intersecting Lines Single Line

X\

Single Point
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General form of conic sections v
£

Ellipse Hyperbola Parabola

Ax?+Bxy+Cy?+Dx+Ey+F =0

- Ildentify the values of A and C from the general form.

- If A and C are nonzero, have the same sign, and are not equal to each other, then
the graph may be an ellipse.

- If A and C are equal and nonzero and have the same sign, then the graph may be
a circle.

- If A and C are nonzero and have opposite signs, then the graph may be a
hyperbola.

- Ifeither A or C is zero, then the graph may be a parabola.

13



Conic sections are foundational across disciplines!

Wake created from
shock wave

Portion of
a hyperbola
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Examples

Conic Sections Example
ellipse 4x2 + 92 =1
circle 42 +4y? =1

hyperbola 4x2 -9y =1
parabola 4x2 =9y or 4y* = 9x

15



Back to our hyperbolic paraboloid

Level Curves

Hyperbolic paraboloid

sssss

flz,y)=a" -y =0= (z—y)- (x+y) =0
22 9

f(z,y) =c = — — = = 1 (Hyperbola!)
c c


https://mathworld.wolfram.com/HyperbolicParaboloid.html

A refresher I: Single variable function

The difference quotient computes the slope of the A
secant line through two points of y=f(x). y f(z)

oy _ f(z+dz) — f(z)

dx ox

f(zg + o)
The idea of the derivative f'(x) is that it is the slope f(zo) oy
of the tangent line at x to the curve. 5
>

af _ . fe+h) - f(a)
dx - h—0 h

What is the derivative of d/dx(x")?

17



A refresher ll: Single variable function

Product rule: (f(x)g(x)) = f'(x)g(x) +

Quotient rule: — ) =

g
Sum rule: (f(x)+g(x) = f'(x) + ¢ (x)
Chainrule:  (g(f(2))) = (g0 f)'(z) = ¢'(f(z))f'(z)

Source Chapter 5 https://mml-book.github.io/ (Mandatory reading)

(5.29)

(5.30)

(5.31)
(5:32)

18


https://mml-book.github.io/
https://mml-book.github.io/

Matrix calculus

- Scalar field, a function f that maps vectorstoreals  f:R" =+ R
z=14,3|p = 4x + 3y
T 2 2
z=pp=z"+y

- Vector field, or vector valued functions f:R"™ — R™

- Functions of matrices f(A).

19


http://www.matrixcalculus.org/

Gradient of a scalar field

e Partial derivative at x=(x,,..,X_)

170

of o flxer, oo+ by xy) — f(n, - Ty, )
= lim
6.137; h—0 h

e We collect them at the row vector known as the gradient of the function f
0 0 9

Remark: the gradient collects the slopes in the positive x. direction for all i=1..n.

20



Directional derivative

- Instead of computing the slopes in the positive x. directions for all i=1..n, we can

compute the derivative along any direction.
Directional derivative

f(z + hv) — f(=)

V,f(z) = Dyf(x) = lim — Vf(z)-v
h—0 h
- Exercise
Let f(x,y)=x?y. Find the following:
The gradient of f
The gradient of f at (3,2)

The derivative of f in the direction of (1,2) at the point (3,2).

Demo

21


https://en.wikipedia.org/wiki/Directional_derivative
https://mathinsight.org/applet/gradient_directional_derivative_mountain

Hessian of a scalar field

If all second partial derivatives of f exist and are continuous over the domain of the
function, then the Hessian matrix is a square matrix, usually defined and arranged as

follows:

[ 0 > f ’?f ]
817% 8:131 8$2 8:1:1 8:I:n
o0*f 0*f 0*f
H, - 0xy 01 &cg 0z, Oz,
& f % f 1
| Oz, 0z1 Oz, Oz oz?

22



Example

- Compute the Hessian of f(x,y)=xy(x+y) at (1,1).

. (2(:1 ) 2(;132-; y)), Hp(1,1) = (Z g)

- The symmetry of H is not a coincidence; of f(x,y) is a twice continuously
differentiable function, then

0% f B 0% f
OxOy  Oyozx

23



Taylor Series



Taylor polynomial f:R—R

The Taylor polynomial of degree n of fR—R at X, is defined as

where f¥(x) is the k-th derivative of f at x,.




Taylor series f:R—R

The Taylor series of of a smooth function f.R—R at X, is defined as



Examples

e Taylor polynomial T, for f(x)=x" evaluated at ><O=1

N kL o
e Taylor series for trigonometric functions () = ;:0 (=1) 2k)! "
- 1
sin (m) _ Z (_ )k 2k+1

° httpg://en_\/\/]kipediaorg/wik]/‘favbr Ser]esE ............................ k=0 . ...\


https://en.wikipedia.org/wiki/Taylor_series

Taylor series f:R" >R

Example (whiteboard) 1
f(@) = f(zo) + Vf(zo)(z —z0) + 5 (2 — z0)" Hy(zo)(z — o)



https://mathinsight.org/taylor_polynomial_multivariable_examples

Chain rule

s, s, dg Of
o (g of)lz) = £ (f(x))za_fa_a:

Examples:

Consider a function f:R°-R of two variables x,,x,. Furthermore, suppose that x X,

are functions of a variable t.

Bilil(t)
af [ﬁ ﬂ] o
dt | Oz Oz 53;6;75@)

Consider a function f:R°-R of two variables x,,x,. Furthermore, suppose that x. X,

are functions of two variables s, t.

0x1(s,t) 0z1(s,t)
af _ [ of  of }[ D5 ot ]

dq 0z Oz 8332(3,1;) 8w2(s,t)
Os ot

Letq = [s,t].

29



Chain rule examples

dz
Letz = f(x,vy). =
9z X
X v
z=1f(x,y)
ady ou
9z 3y

dy ov

30


https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.5%3A_The_Chain_Rule_for_Multivariable_Functions

Generalized chain rule

Let z=f(x,,...x_) be a scalar field of m variables, each of which'is a
differential function of n independent variables x=xi(t,,...t ). Then,

0z T, 9z Oz 0z Oz 0z Ox,, .
= = + + =1,...,n

Ot; = Oz; Ot;  Ozy Ot | Oz Of;

31



Examples

2= f(= y)—w2—3wy+2y2

Calculate the derivative of z with respect to t, where & = x(t) = 3 sin (2t)
= y(t) = 4 cos (2t)

Solution:

dz _ Ozdx 0Ozdy : _
dt ~ Oz dt 5y dy dt = (22 — 3y)6 cos (2t) + (—3z + 4y)(—8sin (2t)) =

= 6 cos (2t)(6 sin (2¢) — 12 cos (2t)) — 8sin (2¢)(—9 sin (2¢) + 16 cos (2t)) =

= ...= —46sin (4t) — 72 cos (4t)

32



ax
x=x() dt 9z dx
ax dt

Examples

z = f(x, )

f(x,y)=4x%+3y?, x(t)=sin(t), y(t)=cos(t) .
9z ay
0z 0z dx dy y=yt d oy dt
We compute — = — = —~ —cost.—Z = —sint. dt
P 9 8z, By 6y, o cost, o sin

Now we apply the chain rule

dz_@zd:v+8zdy
dt Ox dt Oy dt

= 8xcost — b6ysint = 8sintcost — 6 costsint = 2costsint

33



1st order derivatives of a vector field: Jacobian
-fl(xb ¢ o 7wn)-

f(mlwﬂawn):

_fm(mlv ceey CL’n)_
The collection of all first-order derivatives of a vector

field/vector-valued function :R"—R™ is called the Jacobian.

Jov,f= @ _[0f@)  0f(2)

dx 8I1 ailfn
[ Of1(x) - Ofi(x) |

0z, . ox,

Ofn@)  Ofm(x)
| Oz, oz, |

34



Jacobian

Y1 = —221 + T2

Let . The Jacobianis simply J = [

Yo = T1 + X2 By Oys

8_131 83:2

Oy Oy
o a—] - [—2 1

This example generalizes to the following. Let f(x)=Ax, where A is a mxn
matrix, and x is an mx1 vector. Then,

df
A
dx

35



Gradient of a Least-Squares Loss in a Linear Model

il = grxdgixl 1ol
Consider the linear model  L(e) = |le||? ol
e(d) =y— ®0
8.
y

OL
Let's prove that a0 = —2(y" —0"®")®

(whiteboard, see also example 5.11 here) 0

36


https://mml-book.github.io/book/mml-book.pdf

Parallelogram of maximum area

Find paralellogram of maximum area with a given perimeter.

max ah
a,b,h

2a + 2b =1/
h<b
a,b,h > (|

Clearly given a,b, h=b is an obvious solution.

Thus we get the following equivalent problem:



Parallelogram of maximum area

Find paralellogram of maximum area with a given perime

m%x ab|
Ra + 2b =1/

a,b > 0

d

A4

d




solution is

Optimal solution a=b=1/4 (h=b) square

GeoGebra  Graphing Calculator

=

+® @ @ @ @®




Transportation problem A n

Minimize the cost of goods transported from

e asetofmsourcesto..
e ...asetofndestinations
o subject to the supply and demand of the sources and destination
respectively

Given:

- Aged units to transfer from sources
- b

-0 s units to receive by destinations
-G cost of transferring a unit from source i to destination j



Transportation problem

- Find the quantities xij to be transferred from source i to destination j for

i=1,..m, j=1,..n.
1=1 j=
E Lij — Qg z:l,...,m

@]—b]7 :1’...,n

Ms

1=1
Lij Z 0




A (not so) Toy ML problem

max m
y(‘)<a.+b H y(red;) > aredi+b+m,i=1,...,n
y(green;) < agreen;+b—m,i=1,...,k




Minimization min f(q;)

rcF
Let f:R"—R.

e When F=R", the optimization is unconstrained.

e When F={x € R": h(z) =0, g(x) <0}
where h:R"—-R™, g:R"—RX are real functions
the problem is called constrained.

But what does it mean to be a minimum? And why don’t we talk about
maximization?



Minimization
e Minimize fis equivalent to maximize -f.

e Definition: A point x* is called a local minimum of f in F if there exist €>0
suchthat /(*) = (") foralixinFsuchthat 1€~ 2 <€

Ifforall = # 2", |lz —a"[| <€ f(z) > f(z") then x* is called Striet



Minimization

e Definition: A point x* is called a global minimum of fin F if f(z) > f(z")

If f(z) > f(z*),forall z # z* then x* is called Strict global minimum,

Y O /
R - /
A\ AR\

N/
I\ /]

Objective

—60



Does the minimum always exist?

What is the minimum of f(z) = —0.5z + 4 where 0 < z < 2

- The minimum does not exist.
- Set x=2-g,£>0. What s f(x)?
- Now set x=2-¢/2, £>0. What is f(x) now?

Weierstrass theorem states that if f:R"—R is continuous, and F is compact then f has a global
minimum in F.



Theorem (1st order necessary conditions)

If f:R"—R is continuous, differentiable function and x* is a local

minimum of f, then
V(') =0

Remark: Necessary, but not sufficient.




Example: least squares

A™" matrix (assume columns are independent)
b™ vector

Least squares problem: Solve min ||Ax-b||*



Least squares

Question: Why can we invert (ATA)?

f(z) = [|Az —b]" = (Az — b)" (Az — b)
=z A" Az — 22" ATb + b'D ATAz =0=2"ATAz =0=
[Az|° =0= Az =0 =
z = 0 (why?)

Vi(z) =2z"ATA-20"A=0=
AT Az = AT =z = (ATA) AT

Normal equations
Turns out that this is the strict global
minimum since f(x) is convex (to be discussed later)



Practice problem

What is the best-fit function of the following form
that passes through the given points?

y = Acos (z) + Bsin (z) + C'cos (2z) + D

A = (-5.7,228) = s @

] [} I I ) I I I

= By = — — .. 54 58 i
T 0 = N = 0 v T
& —- by > [ [ &

= F

= a §

2 Y © > Ny o
o ) . s N & & S

&
S

+ © ® & ®© @ & ® & & ©




Stationary points

Consider the set of stationary points of f |D — Ex* ER": Vf(z) = OH

These include:

e Local minima
e Local maxima
e Saddle points

How do we recognize the type of a stationary point? (More on next lecture, but for
now...)


https://en.wikipedia.org/wiki/Stationary_point

KBRS

Saddle point

/i
=~

let f:R"™™ =R

The point (x*y*) in R™™ is a saddle point:

fl@%y) < (2" y") < flz,y") Ve lz — 2" <eVy: [ly -yl <e

- For fixed y=y* f has a local min at x*
- For fixed x=x*, f has a local max at y*



Theorem (2nd order necessary conditions)

If f:R"—R is continuous, twice differentiable function and x* is a local
minimum of f, then




Necessary but not sufficient

- The previous theorem provides necessary but not sufficient
conditions.

- Let’s see an example. Consider the following unconstrained
minimization problem (F=R?)

min (CUl — mz)z -+ (581 + $3)3
L1,T2



Necessary but not sufficient

From the 1st order necessary condition we obtain

Viz*)=0= [2(;1:1 — 23) + 3(z1 + 22)°, — 2(z1 — @2) + 3(z1 + xﬂ —[0,0] =

0
1 :0,£B2:0:>i13*: [0]



Necessary but not sufficient

. | H—ﬁ— 2+6(x1 +2x2) —2+4 6(x1 + x2)
The Hessianoffis /= 5.5 = | o 6(x1 +x2) 2+ 6(x1 + x2)

2

Thus, Hy(z*) = [ _22] The eigenvalues are 4,0, so the matrix

is positive semidefinite. Another way to see this is as follows:

ZTHp(2")z = 222 — 42120 + 222 = 2(21 — 20)°, Vz = 1] e R?

Z9



Necessary but not sufficient

However, x* is not a local minimum. Let’s see why. Consider the
all-ones eigenvector corresponding to the O eigenvalue, and
consider moving from x* in this direction, i.e., consider

x =x*+a[1,1]" where a<0. Then the objective becomes 8a3<0=f(x*)



Theorem (2nd order sufficient conditions)

If f:R"—R is continuous, twice differentiable function and x* is a strict
local minimum of f, then




Gradient descent

Let’s consider the linearization of f:R—R

f(z+¢) = f(z) +ef () + O(€')

Question: Assuming second-order terms are negligible, how would you
choose € to decrease the value of the function, i.e., f(x+¢)<=f(x)

flz —nf @) = f(z) —n(f @) + O (7 (£ 2))*), n > 0
x <z —nf(z),n>0
BXample f(x)=x2




Gradient descent

When f:R"— R, we use the gradient of f

z <z —n(Vf(z)) ,n>0




Example

Consider a quadratic function in two dimensions

() BN =R

with gradient

vr(ED =[] [ a6

|

T2

1



https://mml-book.github.io/book/mml-book.pdf

Line

Suppose x,,X, are two points in R". Points of the form
y=0zx;+(1—0)xy, 0 € R

form the line passing through x,x,



Affine set

Definition: A set C is affine if the line through any two distinct points lines
in C.

- Theidea generalizes to more than two points. An affine combination
of k points x,,..x, inCis 01z1 + ... + Oz wherety + ... + 0, =1

Claim: An affine set contains every affine combination of its points.

(induction on the number of points)



Affine sets - Prove the following:

1. The solution set {x|A™"x™1=ph™} js an affine set.

2. If Cisanaffine set, and x, isin C, then the set
V=C—-xzy={x—x¢ |z C}
is a subspace.
(Proofs on whiteboard)



Convex vs nhon-convex set

X3
A set Cis convex if the line segment between any two points in C lies
inC, i.e., for any x,,x,in Candforany, 0 <6 <1

Oy +(1-0)zy € C



Hyperplanes

o'z =b,

where a €R", a#0,be R

- b offset of the hyperplane from O

N
\\ aTa: =b

Figure 2.6 Hyperplane in R2, with normal vector a and a point zg in the
hyperplane. For any point = in the hyperplane, z — z¢ (shown as the darker
arrow) is orthogonal to a.


https://web.stanford.edu/~boyd/cvxbook/

Halfspaces

- A hyperplane divides R" into two halfspaces.
- Halfspaces are convex but not affine

Figure 2.7 A hyperplane defined by a” z = b in R? determines two halfspaces.
The halfspace determined by a”z > b (not shaded) is the halfspace extending
in the direction a. The halfspace determined by a”z < b (which is shown
shaded) extends in the direction —a. The vector a is the outward normal of
this halfspace.



Convex function

A function f:Rn—R is convex if its domain dom(f) is convex and if for
all x,y indom(f),and 8in[0,1] f(6z + (1 - 0)y) < 0f(x) + (1 — 0)f(y)
- It is strictly convex if the inequality is strict for all 8 in (0,1).

- fis concave if -f is convex.

e (. f(v)
(I’ f(l')) r——f-~~“'--—--- |

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.



Convex function, 1st order condition

Suppose fis differentiable. Then f is convex if its domain is a convex
setand  f(y) > f(z) + V/()(y — @)

f(y)

fy) = f(z) + Vf(z)(y — =)
(z, f(z))



Convex function, 2nd order condition

Assuming f is twice differentiable. f is convex iff f's domain is convex
and the Hessian is positive semidefinite

————————————————————————————————————————————————————————————————————————————————————————————

Exercise: Prove that f(x,y)=x?/y where x in R, and y>0 is convex.



Convex optimization

A constrained optimization problem is called a convex optimization
problem if ,
min f(z)

subject to  g;(z) <0,i=1,...m
azrm—bi =0,7=1,...,p
where f,gi’s are convex functions.

Remark: the feasible set of a convex optimization problem is convex
(why?)



Readings and Refs

Mandatory readings

[1] Chapters 5 and 7 https:/mml-book.github.io/

Additional readings

[2] https://mathinsight.org/thread/multivar

[3] Libretexts in Math (conic sections), and multivariable calculus
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https://mml-book.github.io/
https://mathinsight.org/thread/multivar
https://math.libretexts.org/Bookshelves/Algebra/Book%3A_Algebra_and_Trigonometry_(OpenStax)/12%3A_Analytic_Geometry#:~:text=In%20analytic%20geometry%2C%20a%20hyperbola,mirror%20images%20of%20each%20other.
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/14%3A_Differentiation_of_Functions_of_Several_Variables/14.5%3A_The_Chain_Rule_for_Multivariable_Functions

