

Necessary conditions for local minimum (UNCONSTRAINED CASE F=R?) 1st ORDER CONdition: Assume of is continuous, differentinble. x* is a local minimum of f. Then . Vf(x*)= D Let's do the proof to see one of the many ways Taylor polynomials are aseful. PROOF for the sake of contradiction NF(x*) =0. $Df_n \times (a) = 2t - a \nabla f(x^*)$ (220). -21xm in our convention. $B_y T_{Aylor}: f(x(a)) = f(x^* - a \nabla f(x^*)) = f(x) + \nabla f(x^*) (x(a) - x^*) + \operatorname{error} D(a)$ $= f(x^*) - a (\nabla f(x^*)) (\nabla f(x^*))^{1}$ Thus. f(x(a))_f(x*) = - a. Z = + o(a) provor. (=) (=1,-.., =n) For small a, the first term. dominates AND thus we conclude. $f(x(a)) < f(x^*)$. Exercise. Repeat the above proof to show. that VFIXO for X* Local maximum. Instead of moving opposite from the gradient, move Along Vf (x*) Definition {x: Vf(x*)=0} is the set of stationary points of 2. 2ND ORDER CONDITION. Assume f is continuous, twice diff. $\nabla f(x^*) = 0, \quad z^T \frac{\partial^2 f}{\partial x^2} = z^T H(x^*) = 0. \quad \forall z \in \mathbb{R}^n.$ Equivalently the Hessian. He evaluated at 2th is positive semiclef. (ALL Rigenvalues Are =0).

																+	
+																++	
-																+	
+																++	
-																++	
+																++	
-																++	
+		_														++	
+													_			++	
+				_			 				_						
+				_												++	
+																++	
+				_												++	
+																	
-																	
+																	
+				_													
_				_												++	
+																	
_																	
_																 	
_																<u> </u>	
_																	
_																	
_																	
_																	
_																	
_																	
																\square	
																\parallel	
																\square	
																\square	
1																	
+	 + +								 		 			+ +		 ++	