minimize $\{f(x): x \in F\}$. where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}:, F \in \mathbb{R}^{n}$
(1) when $F=\mathbb{R}^{m}$, we have an unconstrained optimization problem.
(e) $F=\left\{x \in \mathbb{R}^{n}: h(x)=0, g(x) \leqslant 0\right\}$. where $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
(egg) ${ }^{-} \min 3 x_{1}^{2}+5 x_{2}^{2}$
st $\left.\begin{array}{rl}3 x_{1}+4 x_{2} & =10 . \\ x_{1}^{3}+3 x_{2} & \geq 1 .\end{array}\right\}$ there constraints define F.
\rightarrow what does it mean to minimize?
Definition $x^{*} \in F$ is called local minimum of f on F if there exists $\in>0$ such that $f(x) \geq f\left(x^{*}\right)$. for each $x \in F$ such that $\left\|x-x^{*}\right\| \leqslant \varepsilon$. if the inequality $f(x)>f\left(x^{*}\right)$ is strict for $A \| x$. $\left\|x-x^{*}\right\| \leq \varepsilon, x+x^{*}$. then we call x strict local minimum.

Definition $x^{*} \in F$ is a global minimum of f on F if $f(x) \geqslant f\left(x^{*}\right) \quad \forall x \in F$. (not just for $\left.\left\|x-x^{*}\right\| \leq \varepsilon\right)$. if $f(x)>f\left(x^{*}\right) \quad \forall x \in F$ $x \neq x^{*}$, then x^{*} is called strict global. minimum.

Remark $\quad \min f(x)=-\max (-f(x))$
The existence of a global minimum is not guaranteed. min $10-x$ where $\underbrace{0 \leq x<7}_{F} . \quad(7 \& F)$

Let's prove it by contradiction. Let $x^{*}=7-\delta$ for some $\delta>0$ be the global min.
Consider $x^{\prime}=7-\frac{\delta}{2} \quad\left(\frac{\delta}{2}\right.$ still $\left.>0\right)$.
$x^{\prime} \in F$ AND $\quad 10-(7-\delta / 2)=3+\delta / 2<3+\delta=10-x^{x}$.
Another example:
$f(x)$
min $(10-x)$, where $x \geqslant 0$.
The min doesn't exist, $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$
Weierstrass theorem if $f(x)$ is continuous on a mon-empty. feasible set S that is closed and BOUNDED, then $f(x)$ has Aglobal minimum in S.
this is An existentind theorem. And gives no algorithmic way to find it!
SADDLE POintS Ob a point of inflection where of changes from concave to
During the previous lecture, we san that for $f(x)=x^{3}$ feed $f^{\prime}(0)=0$ but $x=0$ is neither max nor min.

The point $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{n+m}$ is a saddle point. of. $f(x, y)$. where $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ if.
ANalog Remark.
$\left.\begin{array}{l}\text { Non } \ell \max \text { ar } \\ y^{*} \text { for } f\left(x^{*}, y\right) \text {. }\end{array} x^{*}, y\right) \leqslant f\left(x^{*}, y^{*}\right), \leqslant f\left(x, y^{*}\right)$.
y^{*} for $f\left(x^{*}, y\right)$.

$$
\forall x:\left\|x-x^{*}\right\| \leqslant \varepsilon, \quad \forall \quad\left\|y-y^{*}\right\| \leqslant \varepsilon
$$

Necessary conditions for lo cal minimum (unconstrained case $F=\mathbb{R}^{?}$).
$1^{\text {st }}$ ORDER condition: Assume f is continuous, differentiable. x^{*} is A local minimum of f Then $\nabla f\left(x^{*}\right)=0$ Lex's do the proof to see one of the many ways Taylor polynomials are aseful.
$p(r$ informal $)$
Proof for the sake of contradiction $\pi f\left(x^{*}\right) \neq 0$.

$$
\nabla f_{n} x(a)=x^{*}-a \nabla f\left(x^{*}\right) \quad(a \geq 0) .
$$

$$
\begin{aligned}
B_{y} T_{\text {tAylor: }} f(x(a))=f\left(x^{*}-a \nabla f\left(x^{*}\right)\right) & =f\left(x^{*}\right)+\nabla f\left(x^{*}\right)\left(x(a)-x^{*}\right)+\text { error ola) } \\
& =f\left(x^{*}\right)-a\left(\nabla f\left(x^{*}\right)\right)\left(\nabla f\left(x^{*}\right)\right)^{\top}
\end{aligned}
$$

Thus. $f(x(a))-f\left(x^{*}\right)=-a \cdot \sum z_{2}^{2}+o(a)$ Rroror.. $\longrightarrow\left(z_{1}, \ldots, z_{n}\right)$
For small a, the first term. dominates And thus we conclude.

$$
f(x(a))<f\left(x^{*}\right) \text {. }
$$

Exercise. Repeat the above proof to show. that $V f\left(x^{y}\right)$ for x^{*} local maximum. Instead of moving opposite from the gradient, move Along $\# f\left(x^{*}\right)$.
Definition $\left\{x^{2}: \bar{V}\left(x^{+}\right)=0\right\}$ is the set of $s+A+i$ unary points of x.
$2^{\text {ND ORDER CONDITION. Assume } f}$ is continuous, twice diff.

$$
\nabla f\left(x^{*}\right)=0, \quad z^{T} \frac{\partial^{2} f}{\partial x^{2}} z=z^{T} H_{f}^{\left(x_{f}^{*}\right)} z \geqslant 0 . \forall z \in \mathbb{R}^{n}
$$

Equivalently the Hessian. Hf evaluated at x^{*} is positive semidef. (all eigenvalues are ≥ 0).

The proof also based on taylor APPRoximation; but as expected we will involve $2^{N D}$ order Approximation?
Proof As we proved before $\nabla f\left(x^{*}\right)=0$ is The $1^{\text {st }}$ order necessary cont Let's assume that $\exists y \in \mathbb{R}^{n}$ such that $y^{\top} \frac{\partial^{2} f\left(x^{*}\right)}{\partial x^{2}} y<0$.
We will use y as the direction to move along.
Din $x(a)=x^{*}+a y, a \geq 0$.
By Taylor's theorem:
for a sufficiently

$$
f(x(a))-f\left(x^{*}\right)=a\left(V f\left(x^{*}\right)\right) y_{0}+\frac{1}{2} a^{2} y^{\top} \frac{\partial^{2} f\left(x^{*}\right)}{\partial x^{2}} y \cdot+o\left(a^{2}\right) \cdot \int_{0}^{2}
$$

Thus, $f(x(a))-f\left(x^{*}\right)<v \quad \forall a \in(0, \hat{a})$.
COntrAdiction!
Example. $\min _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=3\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}+x_{2}\right)^{3}$.

$$
\begin{aligned}
& \nabla f= {\left[6\left(x_{1}-x_{2}\right)+3\left(x_{1}+x_{2}\right)^{2},-6\left(x_{1}-x_{2}\right)+3\left(x_{1}+x_{2}\right)^{2}\right]=0 . } \\
& \Rightarrow x^{*}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& H_{f}=\frac{\partial^{2} f}{\partial x^{2}}=\left[\begin{array}{lc}
6+6\left(x_{1}+x_{2}\right) . & -6+6\left(x_{1}+x_{2}\right) \\
-6+6\left(x_{1}+x_{2}\right) & 6+6\left(x_{1}+x_{2}\right)
\end{array}\right]
\end{aligned}
$$

When we evaluate $H_{f}(0,0)=\left[\begin{array}{ll}+6 & -6 \\ -6 & +6\end{array}\right]$ which is positive semidef.

Consider. the eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]=z$ of $H_{f}\left(x^{*}\right)$ with eigenvalue ©. $f\left(x^{*}+a z\right)=8 a^{3}$ (so for $a<0$ we get A value $<f\left(x^{*}\right)$).
This is why we CALL these conditions necessary! LS (but not sufficient).

