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Time series – ubiquitous!

Time-series appear in any domain that involves temporal
measurements.

Examples of such domains include:

• signal processing

• econometrics

• mathematical finance

• weather forecasting

• electroencephalography

• control engineering

• astronomy

• communications engineering

• . . .
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Time series – examples

Temperature time series across 4 Italian cities
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Time series – examples

Bitcoin price

• When we have a single time-series we wish to forecast
using its past values, we call this univariate analysis.
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Time series – examples

EEG time series from different sections of the brain

• When we have a target time-series we wish to forecast
using its past values and other co-evolving time-series, we
call this multivariate analysis.
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Time series analysis

Why do we analyze time-series?

1 Interpretation

E.g., seasonal adjustment

2 Forecasting

E.g., predict stock prices

3 Control

E.g., how does increasing VAT will affect
(un)employment?

Babis Tsourakakis Basics of Time-Series Analysis 6 / 112



Time series analysis
4 Hypothesis testing

E.g., should we be believers in global warming?

5 Understanding catastrophic events

E.g., will an impactful earthquake take place tomorrow
(here)?
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Today’s focus – Forecasting

A trend is a trend is a trend. But the question is, will it bend?
Will it alter its course through some unforeseen force and

come to a premature end? (Alex Cairncross)
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Today’s outline

1 Part I: Fundamentals
• Stochastic processes, strict vs weak stationarity,

correlograms, partial correlograms, periodograms,
autoregressive models (AR), moving average models
(MA), transformations, compact time-series description.

2 Part II: Forecasting methods
• Evaluation protocols, basic metrics, null models, spectral

methods, ARMA, ARIMA, SARIMA, VAR, similarity
search, deep learning (deep feedforward neural nets,
recursive neural nets)
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Stochastic processes – informal description

Definition. A stochastic process is a collection of random
variables indexed by time.

(a) Discrete time stochastic processes (e.g., X0,X1,X2, . . .)

(b) Continuous time stochastic processes ( {Xt}t≥0 )

(a) (b)
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Time-series – formal definition

• A time series is a stochastic process consisting of
random variables indexed by time t.

• The stochastic behavior of the time series is determined
by specifying the probability density/mass functions
(pdf’s)

p(xt1 , xt2 , . . . , xtm),

for all finite collections of time indexes

{(t1, . . . , tm),m < +∞},

i.e, all finite-dimensional distributions of {Xt}.
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Time-series – Stationarity
Strictly stationary time-series. A time series {Xt} is
strictly stationary if ∀t,m, (t1, . . . , tm)

p(t1 + τ, . . . , tm + τ) = p(t1, . . . , tm).

• In other words, a time series is strictly stationary if the
probability distribution is invariant under time translation.

Examples

(a) iid processes are strictly stationary.

(b) Xt = Z1 cos(t) + Z2 sin(t) is strictly stationary if Z1,Z2

are independent normal variables.

(c) Random walks in certain types of graphs (stationary
Markov chains)

Remark: Stationary time series are typically
non-stationary.
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Time-series – Covariance stationarity

Covariance stationary time-series. A time series {Xt} is
covariance stationary if

E [Xt ] = µ

Var [Xt ] = σ2

Cov[Xt ,Xt+h] = γ(h)

Reminder: Cov[Xt ,Xt+h] = E [(Xt − µt)(Xt+h − µt+h)] .
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Basic exploration tools – auto-correlation function

Auto-correlation function of {Xt} is defined as

ρX (h) =
γX (h)

γX (0)

=
Cov(Xt+h,Xt)

Cov(Xt ,Xt)

=
Cov(Xt+h,Xt)

Var [Xt ]

= Corr(Xt+h,Xt)

Babis Tsourakakis Basics of Time-Series Analysis 14 / 112



Basic exploration tools – auto-correlation function
White noise: Xt ∼ WN(0, σ2).

• E [Xt ] = 0
• Var [Xt ] = 0
• Pr [Xt ≤ xt ] =

1√
2π

∫ xt
−∞ e−x2/2dx .

Question: What is the auto-correlation function of white
noise? Is it stationary?
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Basic exploration tools – auto-correlation function

We have:

γX (t + h, t) =

{
σ2 h = 0

0 h > 0

Thus,

• µt = 0 for all t

• γX (t + h, ht = γX (h, 0) for all t ≥ 0

• Thus ρX (h) = 1 if h = 0, 0 otherwise.

• question: is Xt stationary?

Babis Tsourakakis Basics of Time-Series Analysis 16 / 112



Basic exploration tools – correlogram
• The correlogram plots the auto-correlation function
versus the lag.
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Basic exploration tools – correlogram

Python:
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What is a random walk time series?
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Random walk

Random walk: St =
∑t

i=1 Xi for Xi ∼ WN(0, σ2).

question: is a random walk stationary or not?
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Random walk is not stationary

• E [St ] = 0

• However, the covariance function is a function of t:

γS(t + h, t) = Cov(St+h, St)

= Cov(St +
h∑

s=1

Xt+s , St)

= Cov(St , St) = Var [St ] = tσ2.

Therefore, St is not stationary.
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Moving average process MA(1)

We define the moving average process of order 1 MA(1) as

Xt = Zt + θZt−1, {Z (t)} ∼ WN(0, σ2).

• We have E [Xt ] = 0 and

γX (t + h, t) = E [Xt+hXt ]

= E [(Zt+h + θZt+h−1)(Zt + θZt−1)]→

γX (t + h, t) =


σ2(1 + θ2) if h = 0

σ2θ if h = 1

0 otherwise
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Moving average process MA(1)

• As we observe MA(1) is stationary.
• E [Xt ] = 0
• γX (t + h, t) = γX (h, 0) is

• How can we use it?
• ∆Icecreamt = ∆temperaturet − 0.9∆temperaturet−1,

• We assume that the changes in the temperature are iid
normal random variables.

• Important observation: We model differences, not the
actual time series values. This is a common time-series
transformation that we use frequently in practice.
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Moving average process MA(1)
The correlogram of ρX of an MA(1) process:

• Moving average processes generalize to order q MA(q)
processes

Xt = µ+ Zt + θ1Zt−1 + . . .+ θqZt−q.

• The autocorrelation function of an MA(q) process is zero
at lag q + 1 and greater.
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Autoregressive process AR(1)

Mathematically an AR(1) process is defined as

Xt = ρXt−1 + Zt ,Zt ∼ WN(0, σ2).

• In general, the order p autoregressive process is defined
similarly as:

Xt = c + ρ1Xt−1 + . . .+ ρpXt−p + Zt ,Zt ∼ WN(0, σ2).

• Exercise

1 E [Xt ] =
c

1−ϕ

2 γX (t + h, t) = σ2

1−ϕ2ϕ
h.
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Autoregressive process AR(1)

• In contrast to moving average processes, the ACF plot
cannot tell us (at least by inspection) the order p (here,
p = 1).

• Still though, we will show another tool, the partial
correlogram plot that allows us to get an idea of the order
of the AR process.
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Basic exploration tools - partial correlogram

• To understand the necessity of another tool that is used
jointly with the correlogram we will give an example.

x(t + 2) = x(t + 1) + ϵ(t + 1) = x(t) + ϵ(t) + ϵ(t + 1).

• Thus x(t + 2) and x(t) are only related because of
x(t + 1) in between.

• The idea of the partial correlogram is to measure the
correlation of x(t + h) and x(t) after removing linear
relationship due to values in between.
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Partial correlogram AR(1)
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Estimating the ACF

• In reality, we have only access to the data.

• Estimating the mean:

x̄ =
1

n

n∑
t=1

xt .

• Estimating autocovariance function:

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x̄) · (xt − x̄).

• Estimating autocorrelation function:

ρ̂(h) =
γ̂(h)

γ̂(0)
.
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Stationarity statistical tests

• Given the data, we can test whether the time series (or
the differences, or other transformations) is stationary or
not.
• Dickey-Fuller test (unit root test)
• Kwiatkowski-Phillips-Schmidt-Shin test

• The KPSS test can test trend-stationarity

• Dickey-Fuller and its variations are popular.
• The Dickey–Fuller test:
• formally, it tests the null hypothesis that a unit root is

present in an autoregressive model.
• Alternative hypothesis: time-series is stationary
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Dickey-Fuller test in Python
1 from statsmodels.tsa.stattools import adfuller

2

3

4 def Dickey_Fuller_test(timeseries):

5 ’’’

6 Test stationarity

7 ’’’

8 #Perform Dickey -Fuller test:

9 print( ’Results of Dickey -Fuller Test:’)

10 dftest = sm.tsa.stattools.adfuller(

timeseries)

11 dfoutput = pd.Series(dftest [0:4] , index =[’

Test Statistic ’,’p-value’,’#Lags Used’,’

Number of Observations Used’])

12 for key ,value in dftest [4]. items():

13 dfoutput[’Critical Value (%s)’%key] =

value

14 print(dfoutput)
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How to interpret the Dickey-Fuller test?
• Null Hypothesis: time series has a unit root, meaning it is
non-stationary.
• Alternative Hypothesis : time-series is stationary
• Code returns:

1 Results of Dickey -Fuller Test:

2 Test Statistic -1.102293e+01

3 p-value 5.925157e-20

4 Number of Observations Used 9.900000e+01

5 Critical Value (5%) -2.891208e+00

6 Critical Value (1%) -3.498198e+00

7 Critical Value (10%) -2.582596e+00

• Check the value of the statistic and compare it the
critical values.
• If it is less than the critical value, then we can reject the
null hypothesis with that level of confidence.
• Also p-values are informative: Rule of thumb:

• If p-value> 0.05, then time-series is non-stationary.
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Kwiatkowski-Phillips-Schmidt-Shin test in Python

1 def kpss_test(timeseries):

2 print (’Results of KPSS Test:’)

3 kpsstest = tsa.stattools.kpss(timeseries)

4 kpss_output = pd.Series(kpsstest [0:2], index

=[’Test Statistic ’,’p-value’)

5 for key ,value in kpsstest [2]. items():

6 kpss_output[’Critical Value (%s)’%key] =

value

7 print (kpss_output)
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Cointegration – Stationarity in multivariate time

series

• When we have multiple co-evolving time-series, there is
the notion of cointegration.

• For example:
• Dt : position of a dog at time t
• Pt : position of the person who takes the dog for a walk

at time t

• While Dt ,Pt may look individually random, their
difference is not.

• Question: does there exist a constant c such that
Pt − cDt is stationary?
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Cointegration – Stationarity in multivariate time

series

1 from statsmodels.tsa.stattools import coint

2 coint(P,Q)
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Fourier analysis - basics

Joseph Fourier showed how to represent a periodic function as
a sum of trigonometric functions (oscillations).
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Fourier analysis - basics

x(t)− ¯x(t) =
n∑

k=1

γk

(
ak cos(2πtωk) + bk sin(2πtωk)

)
.

where ωk = k
n
. If we define:

• Ck =
√
a2k + b2k

• ϕk = arctan bk
ak

then we can also write the formula also as (trigonometric
identity):

x(t)− ¯x(t) =
∑
k

γkCk cos(2πtωk − ϕk).
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Fourier analysis - sinusoidal decomposition

• We prefer to express things in complex numbers.

• Trigonometric identities are trivial. E.g.,

sin(x) cos(x) =
1

2i
(e ix − e−ix)

1

2
(e ix + e−ix) =

=
1

4i
(e i2x − 1 + 1− e−2ix)

=
1

2

1

2i
e i2x − e−2ix) =

1

2
sin(2x).

Babis Tsourakakis Basics of Time-Series Analysis 38 / 112



Periodogram

• A plot of nC 2
k versus the frequency ωk for k = 1, 2, . . . is

called the periodogram of the dataset.

• The periodogram is a very useful tool.

• Random-signals that lack structure have all sinusoids with
equal importance.

• If a time series has a strong sinusoidal signal for some
frequency, then there will be a peak in the periodogram
at that frequency.

• If a large Ck value appears at ωk and other large values
Cℓk appear at multiples ℓωk where ℓ = 2, .. it suggests
that there is a non-sinuisodal signal with that specific
frequency.
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Periodogram – example

1 sig = np.sin(2 * np.pi * f1*time_vec ) + 2* np

.sin(2 * np.pi * f2*time_vec )

2 f, Pxx_den = signal.periodogram(sig)

3 plt.semilogy(f, Pxx_den)

4 plt.show()
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Periodogram

• Python plots

f̂ (ω) =
1

n
|

n∑
t=1

x(t)e2πitω|, ω ∈ [0, 0.5].

• Symmetry f̂ (ω) = f̂ (1− ω)
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Spectrogram

• Which frequencies appear across time?

• Spectrogram!
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Spectrogram – Python snippet

1 from scipy import signal

2 freqs , times , spectrogram = signal.spectrogram(

sig)

3

4 plt.figure(figsize =(5, 4))

5 plt.imshow(spectrogram , aspect=’auto’, cmap=’

hot_r ’, origin=’lower ’)

6 plt.title(’Spectrogram ’)

7 plt.ylabel(’Frequency band’)

8 plt.xlabel(’Time window ’)

9 plt.tight_layout ()
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Time-series transformations

• Earlier we saw that a random walk time series is not
stationary. Nonetheless, the increments form a stationary
time series (white noise).

• Therefore, transforming the time-series can give a
different structured signal

• Goal: Transform the signal so that hopefully it is easier to
model mathematically (and hence better forecasts).
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Time-series transformations - Box-Cox

• A Box-Cox transformation is a way to stabilize the
variance of a time series with non-negative values.

• If negative values are present, we use the Yeo-Johnson
power transform.

• Box-Cox function is is invertible.

• Working with the Box-Cox transformation of financial
time series frequently helps (even slightly).

• There is a parameter λ that defines the Box-Cox
transformation of a measurement y as follows:

f (y , λ) =

{
yλ−1
λ

if λ ̸= 0

log y if λ = 0
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Remark

• An example of how much a transformation can help the
prediction on the gas prices in Italy.

1 Box -Cox transformation

2 ------------------------

3 Absolute error :12.727407888799966

4 ------------------------

5

6 No preprocessing

7 ------------------------

8 Absolute error :23.151990039645284

9 ------------------------
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Time-series transformations - Box-Cox

1 def box_cox(y):

2 if not isinstance(y, pd.Series):

3 y = pd.Series(y)

4 y.astype(float)

5 y_boxcox , lmbda = stats.boxcox(y)

6 return y_boxcox , lmbda

7

8

9 def invboxcox(y, lmbda):

10 if not isinstance(y, pd.Series):

11 y = pd.Series(y)

12 y.astype(float)

13

14 if lmbda == 0:

15 return(np.exp(y))

16 else:

17 return(np.exp(np.log(lmbda*y+1)/lmbda))
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Time-series transformations - Differencing

• First order differencing: convert time series
x(1), x(2), . . . , x(n) to x(2)− x(1), . . . , x(n)− x(n − 1).

1 def first_order_diff(y):

2 if not isinstance(y, pd.Series):

3 y = pd.Series(y)

4 y.astype(float)

5 z = y.diff (1).dropna ()

6 return z

7

8

9

10 def first_order_diff_numpy(data):

11 return [data[i] - data[i - 1] for i in range

(1, len(data))]
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Time-series transformations - Differencing

(variations)

• First order differencing: sometimes when we assume
increments have seasonality we may do the following:

E.g., weekly seasonality on daily data, then we convert
time series x(1), x(2), . . . , x(n) to
x(7)− x(1), x(8)− x(2), . . . , x(n)− x(n − 7)

1 def difference(data , gap):

2 return [data[i] - data[i - gap] for i in range

(gap , len(data))]

• Another variation: second order differencing, i.e.,
differences on the differences (third order etc.)
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Time-series transformations - Logarithm

• The log-transformation of a time-series under certain
mathematical modeling assumptions provably improves
the accuracy of predictors.

• In practice, where the distribution that generates the
time-series is not known, we use it, and evaluate it
empirically.

1 def log_(y):

2 ’’’ The logarithm of the time series (always

apply on non -negative values !) ’’’

3 if not isinstance(y, pd.Series):

4 y = pd.Series(y)

5 y.astype(float)

6 log_y = np.log(y)

7 return log_y

8
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Time-series transformations - Log-returns

• Differences on the log results in what is known as
log-returns.

• Transforms series (x1, ..., xn) to
log(x2/x1), . . . , log(xn/xn−1)

1 def log_returns(y):

2 if not isinstance(y, pd.Series):

3 y = pd.Series(y)

4 y.astype(float)

5 log_returns = np.log(y/y.shift (1)).dropna ()

6 return log_returns

7
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Time-series transformations - Standarization

• Standarization is especially important when we have
multiple time series, with different types of measurements.

• There exist two popular standarization methods:

x ′i =
xi −min1≤j≤n(xj)

max1≤j≤n(x)−min1≤j≤n(x)
,

and

x ′i =
xi − x̄

σ(x)
,
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Time-series transformations - Rolling mean
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Compact time-series description

X (t) = trend(t) + seasonal(t) + residual(t)

• Example: Suppose we have the following time-series:
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Compact time-series description
• In terms of equations, (roughly) we perform two types of
regression, and obtain residuals

X (t) = polynomial(t) +
∑
i

(
βi cos(λi t) + γi sin(λi t)

)
+ Rt

)
• First, we perform regression: X (t) = α0 + αi t + E (t):
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Compact time-series description
• In terms of equations, (roughly) we perform two types of
regression, and obtain residuals

X (t) = polynomial(t) +
∑
i

(
βi cos(λi t) + γi sin(λi t)

)
+ Rt

)
• Second regression
X (t)− (α0+αi t) =

∑
i

(
βi cos(λi t)+γi sin(λi t)

)
+E (t):
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Compact time-series description
• Left with the residuals:

R(t) = X (t)− (α0+αi t)−
∑
i

(
βi cos(λi t)+ γi sin(λi t)

)

• Not done yet! Study the residuals. E.g., can we
forecast them?
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Compact time-series description

• In Python things have been made easy for us.

1 def _decom(dataset):

2 decomposition = statsmodels.tsa.seasonal.

seasonal_decompose(dataset)

3 plt.plot(decomposition.trend , label=’Trend’,

color = ’b’)

4 plt.plot(decomposition.seasonal ,label=’

Seasonality ’, color = ’b’)

5 plt.plot(decomposition.resid , label=’

Residuals ’, color = ’b’)
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Today’s outline

1 Part I: Fundamentals
• Stochastic processes, strict vs weak stationarity,

correlograms, partial correlograms, periodograms,
autoregressive models (AR), moving average models
(MA), transformations, compact time-series description.

2 Part II: Forecasting methods
• Evaluation protocols, basic metrics, null models, spectral

methods, ARMA, ARIMA, SARIMA, VAR, similarity
search, deep learning (DNNs, RNNs)
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Train and test – Respect order!

1 split_time = 1000

2 x_train = series [: split_time]

3 x_test = series[split_time :]
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Train and test – Respect order!

Dataset

Training set Test set
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Evaluation protocols

There exist two main evaluation protocols for a forecasting
method.

1 k-fold cross validation

Remarks
• Cannot just randomly partition the time-series into folds

as in other ML tasks (respect the order!)

2 Walk forward evaluation protocol

• Both protocols can be easily explained visually.
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k-fold cross validation

• Test set size remains same, but training size increases.

1 from sklearn.model_selection import

TimeSeriesSplit
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k-fold cross validation – sklearn
1 X = np.array ([[1, 2], [3, 4], [1, 2], [3, 4],

[1, 2], [3, 4]])

2 y = np.array([1, 2, 3, 4, 5, 6])

3 tscv = TimeSeriesSplit(max_train_size=None ,

n_splits =5)

4 for train_index , test_index in tscv.split(X):

5 ... print("TRAIN:", train_index , "TEST:",

test_index)

6 ... X_train , X_test = X[train_index], X[

test_index]

7 ... y_train , y_test = y[train_index], y[

test_index]

8 >> TRAIN: [0] TEST: [1]

9 >> TRAIN: [0] TEST: [1]

10 >> TRAIN: [0 1] TEST: [2]

11 >> TRAIN: [0 1 2] TEST: [3]

12 >> TRAIN: [0 1 2 3] TEST: [4]

13 >> TRAIN: [0 1 2 3 4] TEST: [5]
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Walk-forward evaluation protocol

• Sliding window of same size.

• Straight-forward implementation.

• In reality, when training is expensive we may sample as
many as possible such windows, with a bias towards more
recent windows.
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Basic metrics – g groundtruth, f forecast
1 import numpy as np

2 errors = forecast - truth

• Mean squared error (mse):

mse(f , g) =
100%

n

n∑
t=1

(ft − gt)
2.

1 mse = np.square(errors).mean()

2

• Root mean squared error (rmse):

rmse(f , g) =
√
mse(f , g).

1 rmse = np.sqrt(mse)

2
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Basic metrics

• Mean absolute error (mae):

mae(f , g) =
100%

n

n∑
t=1

|(ft − gt)|.

1 mae = np.abs(errors).mean()

2

• Mean absolute percentage error (mape):

mape(f , g) =
100%

n

n∑
t=1

| ft − gt
gt
|.

1 mape = np.abs(errors/x_test).mean()

2
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Train, validate and test

• Alternatively, we can split the data into
1 Training set
2 Validation set in order to evaluate hyperparameters,

useful for minimizing overfitting
3 Test set

1 x_train = series [: split1]

2 x_validate= series[split1:split2]

3 x_test = series[split2 :]
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Naive forecasting

• Suppose we wish to predict x(t + 1) given past values
(and possibly other time-series).

• Naive forecasting:

x(t + 1)← x(t).

• Example: Suppose we wish to predict Torino’s
temperature next hour.

Prediction: The temperature in the next hour is going to
be the same as now.

• Competitive baseline!
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More null models
• Constant values, e.g., global average or a frequently
occurring value in the dataset.

• Average/median of past most recent w values where w
can be small or spanning the whole dataset

x(t + 1)←
∑w

j=1 x(t − j)

w
.

• Remark: w = 1, i.e., naive forecasting, tends to be the
most competitive baseline.

• Exponential smoothing (more importance to most recent
measurements)

• Regression and extrapolation

• . . .
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Spectral forecasting
1 We pretend the training dataset is periodic.
2 We perform a spectral decomposition of the signal in
sinusoidal functions.

3 We retain the frequencies that hold most but not all of
the energy

4 Rule of thumb: keeping 80% of the energy is a good
choice, but more values should be tried out.

5 Extrapolate the periodic signal to the test set.
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Spectral forecasting – Training

1 def spectral_prediction(timeseries , n_predict ,

perc = 0.8):

2 n = timeseries.size

3 x_freqdom = fft(timeseries)

4 f = np.fft.fftfreq(n)

5 indexes = list(range(n))

6 harm_squares = np.square(np.abs(x_freqdom))

7 sum_squares = harm_squares.sum()

8 sortd = np.argsort(-harm_squares)

9 cum_sum = 0

10 i = 0

11 n_harm = 0 # number of harmonics in model ,

keep perc% of energy

12 while cum_sum < sum_squares*perc:

13 cum_sum += harm_squares[sortd[i]]

14 i+=1

15 n_harm +=1
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Spectral forecasting – Training

1 my_signal = np.zeros(t.size)

2 for i in indexes:

3 # This is the amplitude of the

extrapolated frequency

4 ampli = np.absolute(x_freqdom[i]) / n

5 # This is the phase of the extrapolated

frequency

6 phase = np.angle(x_freqdom[i])

7 # we add this component to the

extrapolated signal

8 my_signal += ampli * np.cos(2 * np.pi *

f[i] * t + phase)

9

10 return my_signal
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ARMA

• An ARMA(p, q) process {Xt} is a stationary process that
satisfies

Xt − ϕ1Xt−1 − . . .− ϕpXt−p = Wt + θ1Wt−1 + . . .+Wt−q,

where Wt ∼ WN(0, σ2).

• Observations

1 ARMA(p, 0) is same as AR(p).

2 ARMA(0, q) is same as MA(q).

Babis Tsourakakis Basics of Time-Series Analysis 74 / 112



ARMA
• ARMA process are very important because of the
following (informally) stated theorem:

Theorem (Informal statement)

For any stationary process {Yt} with autocovariance γ, and
any k > 0 there is an ARMA process {Xt} that fits {Yt} well.

• This is one big reason why we try to transform a
time-series into a stationary process.

• Many null models are special cases of this model.

• Interpretable.

• For certain types of data it is performing well but for
volatile, non-stationary time-series it is not.

• Always fundamental, non-trivial baseline.
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ARMA - Lowest terms
Consider a process {Xt} such that Xt = Wt where
Wt ∼ WN(0, σ2).

Xt − 3Xt−1 + 4Xt−2 = Wt − 3Wt−1 + 4Wt−2

• This looks like an ARMA(2,2) process! But in reality it is
not, since it is not.
• Something called characteristic polynomials are not in
lowest terms, they share common factors. Actually, here
both the LHS and the RHS have the same characteristic
polynomial ϕ(B) = 1− 3B + 4B2.
• Lowest terms means that the following fraction cannot be
not be simplified further

ϕRHS(B)

ϕLHS(B)
.
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ARIMA

• ARIMA stands for “Auto Regressive Integrated Moving
Average”

• In addition to parameters p, q we have another parameter
d

• d is the number of differencing required to make the time
series stationary

E.g., when d = 0 we have a standard ARMA model.

Remark: differencing does not always succeed, and
overdifferencing may produce “bad” time-series.
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ARIMA

• ARIMA extends to SARIMA by including a seasonal
component.
• This involves also p, d , q parameters but also the
seasonality parameter s.

1 model=sm.tsa.statespace.SARIMAX( data[’PSV -

Italian gas\n[ /MWh]’], order =(1,1,1),

2

seasonal_order =(1,1,1,1),

enforce_invertibility=False).fit(disp=-1)

3 fitted1 = model.fittedvalues
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SARIMA - Parameter search
• ACF, PACF plots but also exhaustive search

1 def parameter_search ():

2 p = range(1, 11), q = range(1, 11)

3 d=range (1,3)

4 Ps = [1,2,3], D= range (1,3), Qs = [1,2,3]

5 s = 7

6 parameters = product(p,d,q, Ps, D, Qs)

7 parameters_list = list(parameters)

8 results = []

9 best_aic = float("inf")

10 for param in tqdm(parameters_list):

11 model=SARIMAX(data , order =(param [0],

param [1], param [2]), seasonal_order =(param

[3], param[4], param[5], s)).fit(disp=-1)

12 aic = model.aic

13 if aic < best_aic:

14 print(’Best model so far :’, param)
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SARIMA(X) – Summary

• Summary

1 Very important family of forecasting methods
2 Well developed packages in Python and R
3 Lots of theory behind them
4 Under stationarity, they come with lots of nice properties

(e.g., confidence intervals)
5 However stationarity is not always there...
6 Therefore, it is always a baseline.
7 SARIMAX also supports exogenous variables, hence the

X .
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VAR
• For multivariate series, these concepts have natural
generalizations.

• For example, the next equation defines a vector
autoregressive process of order 1.

[
y1,t
y2,t

]
=

[
a1,1 a1,2
a2,1 a2,2

]
·
[
y1,t−1

y2,t−1

]
+

[
c1
c2

]
(1)

• Python statsmodels package has VAR ready for us.

1 from statsmodels.tsa.vector_ar.var_model import

VAR

2 model = VAR(endog=train)

3 myfit = model.fit()

4 prediction = myfit.forecast(y=data[-1,:],steps

=1)
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Similarity search
• When are two time series x(t), y(t), t = 1, . . . , n similar?
How do we quantify their similarity?
• There exist two major families of distances:

1 Euclidean and ℓp norms
• Euclidean distance

∑n
t=1(x(t)− y(t))2 (ℓ2 distance)

• Manhattan distance
∑n

t=1 |x(t)− y(t)| (ℓ1 distance)
• Dot product ⟨x , y⟩
• . . .

2 Time warping (DTW) and variations
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Similarity search

• In Python, again things are pretty straight-forward.

1 def euclid(points):

2 return np.linalg.norm(points [0]- points [1])

3

4 def l1_distance(points):

5 return np.linalg.norm(points [0]- points [1],

ord=1)

6

7 from dtw import dtw

8 d, cost_matrix , acc_cost_matrix , path = dtw(x, y

, dist=l1_distance)
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Similarity search - Toy dataset
1 def demo1():

2 x = np.linspace(-np.pi, np.pi, 2001)

3 s1= np.sin (2*x+np.pi/8)

4 s2= np.cos (10*x+np.pi/8)

5 target = 12*s1+10*s2+np.random.normal(loc

=0.0, scale=1,size=len(x))

6 dataset = pd.DataFrame ({’f1’: s1 , ’f2’: s2 ,

’target ’:target })

7 df = dataset

8 data = df.values.T

9 return data
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Similarity search - Windowing around timestamp

• We simultaneously predict all time series, not just the
target time series

• We look into the w previous values and create a vector
with dims × w coordinates.

• We search for the k ≥ 1 most similar such vector in the
training dataset (k small).

• We output the mean/median of the top-k nearest
neighbors.
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Similarity search

• Sometimes, we don’t have the immediate w past values
available.

• Then, we just use the w most recent past values that we
have available for each time-series.
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Similarity search – Prediction results

• In this toy example the prediction results are good overall.

• Similarity search is a useful framework that is able to
either provide decent predictions or show why other
methods fail to product good outputs

i.e., lots of variance among similar windowed patterns.

• Finding the “right” notion of distance is an important
component, as well as the right window length.

• For high-dimensional search, LSH can be used.
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Neurons and perceptrons

A human brain neuron and a perceptron
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Tensorflow – Open source for deep learning

Tensorflow

• Tensorflow is an end-to-end open source machine learning
platform...

• but is also a symbolic math library that can be used even
to run a favorite optimization algorithm on your problem.

1 import tensorflow as tf

2 x = tf.constant("Hello world")

3 sess = tf.Session ()

4 print(sess.run(x)
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Deep learning

• We have a bunch of inputs associated with an output.

• Can we see the right output for a new input, i.e., an input
we have not seen?

• Deep learning is a leading approach to data science,
that uses multiple layers to automatically extract
high-quality, higher-level features from the raw inputs.
• deep neural networks, recurrent neural networks,

convolutional neural networks etc.

• Why does it work? Increasing amount of research to
understand why does it work, even when neurons use
simple activation functions (piecewise flat.)
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Deep feedforward neural networks (DNNs)
Deep feedforward networks feedforward , also of-
ten called neural networks, or multilayer perceptrons
(MLPs), are the quintessential deep learning models.

• The goal of a feedforward network is to approximate some
function f ∗ by composing layers, e.g.,

f̃ (x) = f (3)(f (2)(f (1)(x))).

Babis Tsourakakis Basics of Time-Series Analysis 91 / 112



Deep feedforward neural networks (DNNs) –

Example

• Classic example: DNNs can learn the XOR function.
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DNNs for time-series – Step 1
1. Prepare time series data for DNN by creating a windowed

dataset:
• For each timestamp, let x(t) be the value/label.
• The previous w values could be seen as the input

features.

• Lots of space for feature engineering (Fourier coeffs,
wavelet coeffs, min/max/median etc.)

1 dataset = tf.data.Dataset.range (20)

2 dataset = dataset.window(5, shift=1,

drop_remainder=True)

3 dataset = dataset.flat_map(lambda window: window

.batch (5))

4 dataset = dataset.map(lambda window: (window

[:-1], window [-1:]))

5 for x,y in dataset:

6 print(x.numpy (), y.numpy ())
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DNNs for time-series – Step 1

1 [0 1 2 3] [4]

2 [1 2 3 4] [5]

3 [2 3 4 5] [6]

4 [3 4 5 6] [7]

5 [4 5 6 7] [8]

6 [5 6 7 8] [9]

7 [6 7 8 9] [10]

8 [ 7 8 9 10] [11]

9 [ 8 9 10 11] [12]

10 [ 9 10 11 12] [13]

11 [10 11 12 13] [14]

12 [11 12 13 14] [15]

13 [12 13 14 15] [16]

14 [13 14 15 16] [17]

15 [14 15 16 17] [18]

16 [15 16 17 18] [19]
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DNNs for time-series – Step 1b (batching)
1 dataset = dataset.shuffle ()

2 dataset = dataset.batch (2).prefetch (1)

3 x = [[5 6 7 8] [1 2 3 4]]

4 y = [[9] [5]]

5 x = [[ 9 10 11 12] [12 13 14 15]]

6 y = [[13] [16]]

7 x = [[11 12 13 14] [13 14 15 16]]

8 y = [[15] [17]]

9 x = [[10 11 12 13] [ 4 5 6 7]]

10 y = [[14] [ 8]]

11 x = [[ 7 8 9 10] [14 15 16 17]]

12 y = [[11] [18]]

13 x = [[3 4 5 6] [0 1 2 3]]

14 y = [[7] [4]]

15 x = [[15 16 17 18] [ 6 7 8 9]]

16 y = [[19] [10]]

17 x = [[ 8 9 10 11] [ 2 3 4 5]]

18 y = [[12] [ 6]]

19
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DNNs for time-series – Step 2

2. Split the data into training and test sets.

1 time = np.arange (3 * 365, dtype="float32")

2 split_time = 2*365+31+28+30

3 time_train = time[: split_time]

4 x_train = series [: split_time]

5 time_test = time[split_time :]

6 x_test = series[split_time :]
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DNNs for time-series – Steps 3, 4

3. Setup a DNN architecture (here single layer)

4. Train it

4b Inspect the layer weights

1 dataset = windowed_dataset(x_train , window_size ,

batch_size)

2 layer = tf.keras.layers.Dense(1, input_shape =[

window_size ])

3 model = tf.keras.models.Sequential ([layer ])

4 model.compile(loss="mse", optimizer=tf.keras.

optimizers.SGD(lr=1e-6, momentum =0.9))

5 model.fit(dataset ,epochs =100, verbose =0)

6 print("Layer weights {}".format(layer.

get_weights ()))
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DNNs for time-series – Steps 3, 4

1 Layer weights [array ([[ -0.03136637] ,

[ -0.04519343] ,

2 [ 0.05885418] , [ 0.05017925] ,

3 [ -0.01355846] , [ -0.07844295] ,

4 [ 0.04997651] , [ 0.03857101] ,

5 [ -0.01163514] , [ 0.02050608] ,

6 [ -0.01307715] , [ -0.05444159] ,

7 [ 0.01337368] , [ 0.05073489] ,

8 [ 0.01348611] , [ -0.02583448] ,

9 [ 0.08094374] , [ 0.23290157] ,

10 [ 0.20300445] , [ 0.46333405]] ,

dtype=float32), array ([0.01811779] , dtype=

float32)]

11

• These weights are what we need to forecast a value given
a new input of 20 values.
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DNNs for time-series – Step 5
5. Forecast

1 forecast = []

2 for time in range(len(series) - window_size):

3 forecast.append(model.predict(series[time:time

+ window_size ][np.newaxis ]))

4 forecast = forecast[split_time -window_size :]

5 plt.plot(time_test , forecasts)

6 plt.plot(time_test , x_test)

7 tf.keras.metrics.mean_absolute_error(x_valid ,

results).numpy()
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Quick comment - Activation function ReLU

• ReLU is an important activation function, especially
because it is simple, yet sparse-friendly.
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DNNs for time-series – Adding layers
• Our example uses one layer. We can easily add layers as
follows.

1 model = tf.keras.models.Sequential ([tf.keras.

layers.Dense(10, input_shape =[ window_size],

activation="relu"), tf.keras.layers.Dense (10,

activation="relu"), tf.keras.layers.Dense (1)

])

2
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DNNs for time-series – Did the extra layers help?

• In addition to the visualization, Keras provides an easy
way to compute the various metrics.

1 tf.keras.metrics.mean_absolute_error(x_test ,

results_shallow).numpy ()

2 >> 1.412784

3 tf.keras.metrics.mean_absolute_error(x_test ,

results_deep).numpy()

4 > >1.3640015

• It is worth outlining that this is not always the case.

• The number of layers is one of the hyperparameters to be
optimized.
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Remarks on DNNs

• For multivariate time series, we change the input shape
from a vector to a matrix (batch size × number of
time-series/dimensions)

• Lots of other parameters need to be fine-tuned, including
the weight initializer, use or not of batch normalization,
dropout rates, learning rates of SGD etc.

• Feature selection earlier is also useful for DNNs.

• Not suited for sequential data, but for supervised
framework.

• Next: Deep RNNs
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Last important remark about DNNs

• The approach we described for analyzing time-series can
be extended in two different directions.

1 Create more features from the window. For instance add
dimensions for the maximum value observed.

1 from tsfresh import extract_features

tsfresh is a library that allows for fast extraction of
hundreds of features from each window.

2 We can use any other supervised ML method including
SVM regressors, regression random forests, Gaussian
processes etc.
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Deep recursive neural networks (RNNs)
• RNNs are neural networks for sequential data.

Source: Deep Learning book

ht = fW (ht−1, xt).

• Same function and same set of parameters W are used at
each time step.
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Deep recursive neural networks (RNNs)

• They have a distributed hidden state that allows them to
store a information about the past.

• RNNs offer a lot of flexibility that makes them valuable in
diverse applications

Source: Andrej Karpathy

• An RNN can be thought of as multiple copies of the same
network, each passing a message to a successor.
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Deep recursive neural networks (RNNs) –

TensorFlow
• In constrast to DNNs, the input shape is

[batch size,#timesteps,#dimensions]

1 model = tf.keras.models.Sequential ([

2 tf.keras.layers.SimpleRNN (40, return_sequences

=True),

3 tf.keras.layers.SimpleRNN (40),

4 tf.keras.layers.Dense (1)

5 ])

6

7 optimizer = tf.keras.optimizers.SGD(lr=5e-5,

momentum =0.9)

8 model.compile(loss=tf.keras.losses.Huber (),

9 optimizer=optimizer ,

10 metrics =["mae"])

11 model.fit(dataset ,epochs =100)
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Deep recursive neural networks (RNNs) –

Tensorflow

• Prediction is done in the same way, and evaluation too,
e.g., using

1 tf.keras.metrics.mean_absolute_error(x_test ,

forecast_results).numpy()

• The key method is model.predict again:

1 forecast =[]

2 for time in range(len(series) - window_size):

3 forecast.append(model.predict(series[time:time

+ window_size ][np.newaxis ]))

4

5 forecast = forecast[split_time -window_size :]
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Remark: LSTMs and dilated convolutions
• RNNs are supposed to remember from past, but in
practice they forget easily.
• LSTMs are units that are able to capture better long
term dependencies.
• State-of-the-art time-series prediction methods combine
convolutions, typically used in image processing, with
recurrent neural networks.

Dilated convolutions
Source: original paper, Temporal convolutional networks

by Bai et al. Arxiv:1803.01271
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Tip of iceberg – Lots more to talk about!

• Today I have scratched the tip of the iceberg.

• E.g., in multivariate analysis how do we select the most
relevant time-series to the target series we wish to
forecast?
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Thank you! Questions?

web page: http://tsourakakis.com
email: ctsourak@bu.edu
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